Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Tensorflow.js: FullStack Machine Learning

Tensorflow.js: FullStack Machine Learning

TensorFlow ha conseguido acercar **Machine Learning** a profesionales y entusiastas de la tecnología en todo el mundo sin necesidad de ser un experto en Data Science.

Sin embargo, hasta hace poco, estábamos limitados a usarlo en el servidor y programar en Python, Java o C++. Pero ahora eso ha cambiado. Gracias a TensorFlow.js podemos emplear esta librería para entrenar o utilizar nuestros modelos tanto en cliente como en servidor y siempre en Javascript.

En esta charla realizaremos una introducción al mundo de Machine Learning y de TensorFlow y enseñaremos ejemplos de cómo podemos utilizarlo en nuestras aplicaciones para que al terminar estéis deseando llegar a casa para probarlo.

Laura Morillo-Velarde

November 30, 2018
Tweet

More Decks by Laura Morillo-Velarde

Other Decks in Programming

Transcript

  1. 2 I am Luis Talegón • Data Scientist at seedtag

    • Passionate about breakthrough ML technologies • Twitter: @luisetex
  2. 3 I am Laura Morillo-Velarde • Tech Lead at seedtag

    • GDG Madrid Organizer / WTM Lead / Google Cloud GDE • Backend engineer • 11 years working with different technologies • Twitter: @Laura_Morillo
  3. What’s tensorflow? 5 TensorFlow is an open source software library

    for numerical computation using data-flow graphs. Use flexible and intuitive APIs to build and train models from scratch using the low-level library or the high-level API.
  4. Client side 8 × No drivers needed × Interactive ×

    Use sensor data × Everything client side
  5. 1 2 6 9 5 Matrix Vector Scalar 16 What’s

    a tensor? 5, 6, 0 Tensor 1, 2 5, 6 3, 4 9, 0
  6. What’s A Variable? 18 Value2 3, 3 4, 4 1,

    8 0, 0 Value1 1, 2 5, 6 3, 4 9, 0
  7. Steps 40 1. Get data 2. Preprocess data + augmentation

    3. Build Deep Learning model 4. Train our model
  8. Steps 41 1. Get data 2. Preprocess data + augmentation

    3. Build Deep Learning model 4. Train our model 5. ???
  9. Steps 42 1. Get data 2. Preprocess data + augmentation

    3. Build Deep Learning model 4. Train our model 5. ??? 6. Profit!!
  10. Data collection 43 Play the game (you might even get

    better!) and capture your screen as fast as possible
  11. Network 47 Convolutional Layer Input Size: 200x200x1 32 filters 3x3

    kernel Relu activated MaxPooling: 2x2 Flatten
  12. Network 48 Fully connected: 128 Relu activated Dropout: 0.25 Fully

    connected: 128 Relu activated Dropout: 0.25 Fully connected: 3 Softmax activated
  13. × https://js.tensorflow.org/ => Documentación oficial × https://github.com/Luisetex/HexAI => Demo server

    side × https://github.com/lauramorillo/tensorflow-hexagon-cam => Demo client side Links 61