Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning
Search
Abhinav Tushar
September 10, 2015
Research
6
260
Deep Learning
Introductory talk on deep learning
Abhinav Tushar
September 10, 2015
Tweet
Share
More Decks by Abhinav Tushar
See All by Abhinav Tushar
the garden of eden
lepisma
0
97
Technology
lepisma
0
77
Bio-Inspired Computing
lepisma
0
92
Maestro
lepisma
0
110
War and Economics
lepisma
0
120
Other Decks in Research
See All in Research
VAGeo: View-specific Attention for Cross-View Object Geo-Localization
satai
3
380
言語モデルの内部機序:解析と解釈
eumesy
PRO
47
18k
データサイエンティストの就労意識~2015→2024 一般(個人)会員アンケートより
datascientistsociety
PRO
0
640
LLM-as-a-Judge: 文章をLLMで評価する@教育機関DXシンポ
k141303
3
810
実行環境に中立なWebAssemblyライブマイグレーション機構/techtalk-2025spring
chikuwait
0
220
数理最適化に基づく制御
mickey_kubo
5
660
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
300
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
ssii
PRO
6
3.4k
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
200
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
170
Scale-Aware Recognition in Satellite images Under Resource Constraints
satai
3
330
Looking for Escorts in Sydney?
lunsophia
1
120
Featured
See All Featured
Optimizing for Happiness
mojombo
379
70k
Writing Fast Ruby
sferik
628
61k
For a Future-Friendly Web
brad_frost
179
9.8k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
16
940
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
KATA
mclloyd
29
14k
Statistics for Hackers
jakevdp
799
220k
A designer walks into a library…
pauljervisheath
206
24k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Transcript
D E E P L E A R N I
N G
models AE / SAE RBM / DBN CNN RNN /
LSTM Memnet / NTM agenda questions What ? Why ? How ? Next ?
what why how next What ? AI technique for learning
multiple levels of abstractions directly from raw information
what why how next Primitive rule based AI Tailored systems
Hand Crafted Program Output Input
what why how next Classical machine learning Learning from custom
features Hand Crafted Features Learning System Output Input
what why how next Deep Learning based AI Learn everything
Learned Features (Lower Level) Learned Features (Higher Level) Learning System Output Input
None
https://www.youtube.com/watch?v=Q70ulPJW3Gk PPTX PDF (link to video below)
With the capacity to represent the world in signs and
symbols, comes the capacity to change it Elizabeth Kolbert (The Sixth Extinction) “
Why The buzz ?
what why how next Google Trends Deep Learning
what why how next
Crude timeline of Neural Networks 1950 1980 1990 2000 Perceptron
Backprop & Application NN Winter
2010 Stacking RBMs Deep Learning fuss
HUGE DATA Large Synoptic Survey Telescope (2022) 30 TB/night
HUGE CAPABILITIES GPGPU ~20x speedup Powerful Clusters
HUGE SUCCESS Speech, text understanding Robotics / Computer Vision Business
/ Big Data Artificial General Intelligence (AGI)
How its done ?
what why how next Shallow Network ℎ ℎ = (,
0) = ′(ℎ, 1) = (, ) minimize
what why how next Deep Network
what why how next Deep Network More abstract features Stellar
performance Vanishing Gradient Overfitting
what why how next Autoencoder ℎ Unsupervised Feature Learning
what why how next Stacked Autoencoder Y. Bengio et. all;
Greedy Layer-Wise Training of Deep Networks
what why how next Stacked Autoencoder 1. Unsupervised, layer by
layer pretraining 2. Supervised fine tuning
what why how next Deep Belief Network 2006 breakthrough Stacking
Restricted Boltzmann Machines (RBMs) Hinton, G. E., Osindero, S. and Teh, Y.; A fast learning algorithm for deep belief nets
Rethinking Computer Vision
what why how next Traditional Image Classification pipeline Feature Extraction
(SIFT, SURF etc.) Classifier (SVM, NN etc.)
what why how next Convolutional Neural Network Images taken from
deeplearning.net
what why how next Convolutional Neural Network
what why how next Convolutional Neural Network Images taken from
deeplearning.net
what why how next Convolutional Neural Network
what why how next The Starry Night Vincent van Gogh
Leon A. Gatys, Alexander S. Ecker and Matthias Bethge; A Neural Algorithm of Artistic Style
what why how next
what why how next Scene Description CNN + RNN Oriol
Vinyals et. all; Show and Tell: A Neural Image Caption Generator
Learning Sequences
what why how next Recurrent Neural Network Simple Elman Version
ℎ ℎ = ( , ℎ−1 , 0, 1) = ′(ℎ , 2)
what why how next Long Short Term Memory (LSTM) add
memory cells learn access mechanism Sepp Hochreiter and Jürgen Schmidhuber; Long short-term memory
None
what why how next
what why how next Fooling Deep Networks Anh Nguyen, Jason
Yosinski, Jeff Clune; Deep Neural Networks are Easily Fooled
Next Cool things to try
what why how next Hyperparameter optimization bayesian Optimization methods adadelta,
rmsprop . . . Regularization dropout, dither . . .
what why how next Attention & Memory NTMs, Memory Networks,
Stack RNNs . . . NLP Translation, description
what why how next Cognitive Hardware FPGA, GPU, Neuromorphic Chips
Scalable DL map-reduce, compute clusters
what why how next Deep Reinforcement Learning deepmindish things, deep
Q learning Energy models RBMs, DBNs . . .
https://www.reddit.com/r/MachineLearning/wiki
Theano (Python) | Torch (lua) | Caffe (C++) Github is
a friend
@AbhinavTushar ?