Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Abhinav Tushar
September 10, 2015
Research
6
280
Deep Learning
Introductory talk on deep learning
Abhinav Tushar
September 10, 2015
Tweet
Share
More Decks by Abhinav Tushar
See All by Abhinav Tushar
the garden of eden
lepisma
0
100
Technology
lepisma
0
91
Bio-Inspired Computing
lepisma
0
100
Maestro
lepisma
0
130
War and Economics
lepisma
0
140
Other Decks in Research
See All in Research
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
650
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.3k
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
130
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
630
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
480
ブレグマン距離最小化に基づくリース表現量推定:バイアス除去学習の統一理論
masakat0
0
130
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
6
3k
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
180
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.3k
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.1k
2025-11-21-DA-10th-satellite
yegusa
0
110
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
GraphQLとの向き合い方2022年版
quramy
50
14k
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
62
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
36k
Fireside Chat
paigeccino
41
3.8k
Color Theory Basics | Prateek | Gurzu
gurzu
0
190
Faster Mobile Websites
deanohume
310
31k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
4 Signs Your Business is Dying
shpigford
187
22k
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
220
Abbi's Birthday
coloredviolet
1
4.7k
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
52
Transcript
D E E P L E A R N I
N G
models AE / SAE RBM / DBN CNN RNN /
LSTM Memnet / NTM agenda questions What ? Why ? How ? Next ?
what why how next What ? AI technique for learning
multiple levels of abstractions directly from raw information
what why how next Primitive rule based AI Tailored systems
Hand Crafted Program Output Input
what why how next Classical machine learning Learning from custom
features Hand Crafted Features Learning System Output Input
what why how next Deep Learning based AI Learn everything
Learned Features (Lower Level) Learned Features (Higher Level) Learning System Output Input
None
https://www.youtube.com/watch?v=Q70ulPJW3Gk PPTX PDF (link to video below)
With the capacity to represent the world in signs and
symbols, comes the capacity to change it Elizabeth Kolbert (The Sixth Extinction) “
Why The buzz ?
what why how next Google Trends Deep Learning
what why how next
Crude timeline of Neural Networks 1950 1980 1990 2000 Perceptron
Backprop & Application NN Winter
2010 Stacking RBMs Deep Learning fuss
HUGE DATA Large Synoptic Survey Telescope (2022) 30 TB/night
HUGE CAPABILITIES GPGPU ~20x speedup Powerful Clusters
HUGE SUCCESS Speech, text understanding Robotics / Computer Vision Business
/ Big Data Artificial General Intelligence (AGI)
How its done ?
what why how next Shallow Network ℎ ℎ = (,
0) = ′(ℎ, 1) = (, ) minimize
what why how next Deep Network
what why how next Deep Network More abstract features Stellar
performance Vanishing Gradient Overfitting
what why how next Autoencoder ℎ Unsupervised Feature Learning
what why how next Stacked Autoencoder Y. Bengio et. all;
Greedy Layer-Wise Training of Deep Networks
what why how next Stacked Autoencoder 1. Unsupervised, layer by
layer pretraining 2. Supervised fine tuning
what why how next Deep Belief Network 2006 breakthrough Stacking
Restricted Boltzmann Machines (RBMs) Hinton, G. E., Osindero, S. and Teh, Y.; A fast learning algorithm for deep belief nets
Rethinking Computer Vision
what why how next Traditional Image Classification pipeline Feature Extraction
(SIFT, SURF etc.) Classifier (SVM, NN etc.)
what why how next Convolutional Neural Network Images taken from
deeplearning.net
what why how next Convolutional Neural Network
what why how next Convolutional Neural Network Images taken from
deeplearning.net
what why how next Convolutional Neural Network
what why how next The Starry Night Vincent van Gogh
Leon A. Gatys, Alexander S. Ecker and Matthias Bethge; A Neural Algorithm of Artistic Style
what why how next
what why how next Scene Description CNN + RNN Oriol
Vinyals et. all; Show and Tell: A Neural Image Caption Generator
Learning Sequences
what why how next Recurrent Neural Network Simple Elman Version
ℎ ℎ = ( , ℎ−1 , 0, 1) = ′(ℎ , 2)
what why how next Long Short Term Memory (LSTM) add
memory cells learn access mechanism Sepp Hochreiter and Jürgen Schmidhuber; Long short-term memory
None
what why how next
what why how next Fooling Deep Networks Anh Nguyen, Jason
Yosinski, Jeff Clune; Deep Neural Networks are Easily Fooled
Next Cool things to try
what why how next Hyperparameter optimization bayesian Optimization methods adadelta,
rmsprop . . . Regularization dropout, dither . . .
what why how next Attention & Memory NTMs, Memory Networks,
Stack RNNs . . . NLP Translation, description
what why how next Cognitive Hardware FPGA, GPU, Neuromorphic Chips
Scalable DL map-reduce, compute clusters
what why how next Deep Reinforcement Learning deepmindish things, deep
Q learning Energy models RBMs, DBNs . . .
https://www.reddit.com/r/MachineLearning/wiki
Theano (Python) | Torch (lua) | Caffe (C++) Github is
a friend
@AbhinavTushar ?