Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
09 API Interactions III.
Search
LiLa'16
March 20, 2016
Research
0
52
09 API Interactions III.
LiLa'16
March 20, 2016
Tweet
Share
More Decks by LiLa'16
See All by LiLa'16
01 Introduction
lila16ecir
0
81
02 Online Evaluation
lila16ecir
0
88
03 LL4IR Architecture
lila16ecir
0
69
04 Use-Cases
lila16ecir
0
74
05 API Interactions I.
lila16ecir
0
64
06 Models for Use-Cases
lila16ecir
0
57
07 API Interactions II.
lila16ecir
0
57
08 Interpreting Feedback
lila16ecir
0
110
10 Simulations
lila16ecir
0
79
Other Decks in Research
See All in Research
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
760
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
20k
2026-01-30-MandSL-textbook-jp-cos-lod
yegusa
0
170
超高速データサイエンス
matsui_528
2
380
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.1k
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
610
第66回コンピュータビジョン勉強会@関東 Epona: Autoregressive Diffusion World Model for Autonomous Driving
kentosasaki
0
330
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
180
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9.5k
音声感情認識技術の進展と展望
nagase
0
460
ブレグマン距離最小化に基づくリース表現量推定:バイアス除去学習の統一理論
masakat0
0
140
POI: Proof of Identity
katsyoshi
0
140
Featured
See All Featured
Skip the Path - Find Your Career Trail
mkilby
0
55
How STYLIGHT went responsive
nonsquared
100
6k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
50
Game over? The fight for quality and originality in the time of robots
wayneb77
1
120
Into the Great Unknown - MozCon
thekraken
40
2.3k
First, design no harm
axbom
PRO
2
1.1k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
Google's AI Overviews - The New Search
badams
0
910
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
78
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
65
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Transcript
Anne Schuth (Blendle / University of Amsterdam, The Netherlands) Krisztian
Balog (University of Stavanger, Norway) Tutorial at ECIR 2016 in Padua, Italy API Interactions III.
Outline for API interactions • Obtaining an API key and
signing up for a site • Getting queries and candidate items • Generating and uploading rankings • Obtaining feedback and outcome
Feedback endpoint • GET /api/participant/feedback/(key)/ (qid)[/(runid)] • Returns feedback for
this user on this query • runid is optional • qid can be “all”
Feedback endpoint { "feedback": [ {"qid": "S-q1", "runid": "baseline", "modified_time":
"Sun, 27 Apr 2014 13:46:00 -0000", "doclist": [ { "clicked": false, "docid": "R-d89", "team": "participant" }, { "clicked": false, "docid": "R-d87", "team": "site" }, { "clicked": true, "docid": "R-d88", "team": "site" }, ...
Outcome endpoint • GET /api/participant/outcome/(key)/ (qid) • Returns outcome for
this user on this query • Outcomes are aggregated per test period • qid can be “all”
Outcome endpoint { "outcomes": [ { "impressions": 661, "losses": 103,
"outcome": 0.4690721649484536, "qid": "all", "site_id": "R", "test_period": { "end": "Sat, 16 May 2015 00:00:00 -0000", "name": "CLEF LL4IR Round #1", "start": "Fri, 01 May 2015 00:00:00 -0000" }, "ties": 467, "type": "test", "wins": 91 }, ... ] }
Exercise • Complete 03_feedback.py to obtain feedback and outcome for
the queries from the run(s) you submitted in exercise #2
What to do with this feedback? • You figure it
out… • (That might be your next paper)