Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyNNDescent: Fast Approximate Nearest Neighbors...
Search
Leland McInnes
July 16, 2021
Programming
0
1k
PyNNDescent: Fast Approximate Nearest Neighbors with Numba
A PDF version of slides for my SciPy 2021 talk on PyNNDescent.
Leland McInnes
July 16, 2021
Tweet
Share
More Decks by Leland McInnes
See All by Leland McInnes
Word and Document Embeddings
lmcinnes
0
150
Topological Data Analysis
lmcinnes
1
340
Ensemble Topic Modelling
lmcinnes
1
480
Learning Topology: topological methods for unsupervised learning
lmcinnes
2
3.6k
A Guide to Dimension Reduction
lmcinnes
3
1.4k
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
lmcinnes
2
2.7k
Other Decks in Programming
See All in Programming
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.8k
AgentCoreとHuman in the Loop
har1101
5
220
メルカリのリーダビリティチームが取り組む、AI時代のスケーラブルな品質文化
cloverrose
2
510
開発者から情シスまで - 多様なユーザー層に届けるAPI提供戦略 / Postman API Night Okinawa 2026 Winter
tasshi
0
190
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
6k
Implementation Patterns
denyspoltorak
0
280
dchart: charts from deck markup
ajstarks
3
990
15年続くIoTサービスのSREエンジニアが挑む分散トレーシング導入
melonps
2
160
ThorVG Viewer In VS Code
nors
0
760
生成AIを使ったコードレビューで定性的に品質カバー
chiilog
1
230
高速開発のためのコード整理術
sutetotanuki
1
380
CSC307 Lecture 07
javiergs
PRO
0
550
Featured
See All Featured
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
63
Ethics towards AI in product and experience design
skipperchong
2
190
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
Balancing Empowerment & Direction
lara
5
880
The Cult of Friendly URLs
andyhume
79
6.8k
New Earth Scene 8
popppiees
1
1.5k
How to make the Groovebox
asonas
2
1.9k
GitHub's CSS Performance
jonrohan
1032
470k
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
140
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
47
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
62
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.9k
Transcript
Fast Approximate Nearest Neighbour Search with Numba
What are Nearest Neighbours?
Given a set of points with A distance measure between
them…
… and a new “query point” …
Find the closest points to the query point
Why Nearest Neighbors?
Nearest Neighbour computations are at the heart of many machine
learning algorithms
KNN-Classi fi ers KNN-Regressors
Clustering https://commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg by Chire https://www. fl ickr.com/photos/trevorpatt/41875889652/in/photostream/ by Trevor Patt
HDBSCAN DBSCAN Single Linkage Clustering Spectral Clustering
Dimension Reduction http://lvdmaaten.github.io/tsne/ http://www-clmc.usc.edu/publications/T/tenenbaum-Science2000.pdf t-SNE Isomap Spectral Embedding UMAP
Recommender Systems Query Expansion
Why Approximate Nearest Neighbours?
Finding exact nearest neighbours is hard
Approximate nearest neighbour search trades accuracy for performance
How Do You Find Nearest Neighbors?
Using Trees
Hierarchically divide up the space into a tree
Bound the search using the tree structure (And the triangle
inequality)
KD-Tree
Ball Tree
Random Projection Tree
Using Graphs
How do you search for nearest neighbours of a query
using a graph? Malkov and Yashunin, 2018 Dong, Moses and Li, 2011 Iwasaki and Miyazaki, 2018
Start with a nearest neighbour graph of the training data
Assume we now want to fi nd neighbours of a query point
Choose a starting node in the graph (potentially randomly) as
a candidate node
None
Look at all nodes connected by an edge to the
best untried candidate node in the graph Add all these nodes to our potential candidate pool
None
Sort the candidate pool by closeness to the query point
Truncate the pool to the k best candidates
None
Return to the Expansion step unless we have already tried
all the candidates in the pool
Stop when there are no untried candidates in the pool
None
None
None
None
Looks inef fi cient Scales up well
None
Graph adapts to intrinsic dimension of the data
But how do we build the graph?!
The algorithm works (badly) even on a bad graph
Run one iteration of search for every node Update the
graph with new better neighbours Search is better on the improved graph
None
None
None
None
None
Perfect accuracy of neighbours is not assured We can get
an approximate knn-graph quickly
How Do You Make it Fast?
Algorithm tricks
Query node Expansion node Current neighbour
Neighbour A Neighbour B Common node
Hubs have a lot of neighbours!
None
None
Sample neighbours when constructing the graph Prune away edges before
performing searches
Necessary to fi nd green’s nearest neighbour Necessary to fi
nd blue’s nearest neighbour Not required since we can traverse through blue
For search remove the longest edges of any triangles in
the graph
Initialize with Random Projection Trees
Implementation tricks
None
Pro fi le and inspect llvm code for innermost functions
Type declarations and code choices can help the compiler a lot!
@numba.jit def euclidean(x, y): return np.sqrt(np.sum((x - y)**2)) Query benchmark
took 12s
@numba.jit(fastmath=True) def euclidean(x, y): result = 0.0 for i in
range(x.shape[0]): result += (x[i] - y[i])**2 return np.sqrt(result) Query benchmark took 8.5s
@numba.njit( numba.types.float32( numba.types.Array( numba.types.float32, 1, "C", readonly=True ), numba.types.Array( numba.types.float32,
1, "C", readonly=True ), ), fastmath=True, locals={ "result": numba.types.float32, "diff": numba.types.float32, "i": numba.types.uint16, }, ) def squared_euclidean(x, y): result = 0.0 dim = x.shape[0] for i in range(dim): diff = x[i] - y[i] result += diff * diff return result Query benchmark took 7.6s
Custom data structure implementations to help numba for often called
code
@numba.njit( "i4(f4[ :: 1],i4[ :: 1],f4,i4)", ) def simple_heap_push(priorities, indices,
p, n): ...
Numba has signi fi cant function call overhead with large
parameters Use closures over static data instead
@numba.njit() def frequently_called_function(param, large_readonly_data): ... val = access(large_readonly_data, param) ...
def create_frequently_called_function(large_readonly_data): @numba.njit() def closure(param): ... val = access(large_readonly_data, param) ... return closure
How Does it Compare?
Performance
We can test query performance using ann-benchmarks https://github.com/erikbern/ann-benchmarks
Consider the whole accuracy / performance trade-off space
vs
None
None
None
None
Caveats: •Newer algorithms and implementations •Hardware can makes a big
difference •No GPU support for pynndescent
Features
Out of the box support for a wide variety of
distance measures: Euclidean Cosine Hamming Manhattan Minkowski Chebyshev Jaccard Haversine Dice Wasserstein Hellinger Spearman Correlation Mahalanobis Canberra Bray-Curtis Angular TSSS +20 more measures https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa By Maarten Grootendorst
Custom metrics in Python (using numba)
Support for sparse data
Drop-in replacement for sklearn KNeighborsTransformer
Summary
pip install pynndescent conda install pynndescent https://github.com/lmcinnes/pynndescent
[email protected]
@leland_mcinnes
Questions?
[email protected]
@leland_mcinnes