Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyNNDescent: Fast Approximate Nearest Neighbors...
Search
Leland McInnes
July 16, 2021
Programming
0
880
PyNNDescent: Fast Approximate Nearest Neighbors with Numba
A PDF version of slides for my SciPy 2021 talk on PyNNDescent.
Leland McInnes
July 16, 2021
Tweet
Share
More Decks by Leland McInnes
See All by Leland McInnes
Word and Document Embeddings
lmcinnes
0
99
Topological Data Analysis
lmcinnes
1
240
Ensemble Topic Modelling
lmcinnes
1
400
Learning Topology: topological methods for unsupervised learning
lmcinnes
2
3.3k
A Guide to Dimension Reduction
lmcinnes
3
1.2k
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
lmcinnes
2
2.2k
Other Decks in Programming
See All in Programming
外部システム連携先が10を超えるシステムでのアーキテクチャ設計・実装事例
kiwasaki
1
280
レガシーシステムにどう立ち向かうか 複雑さと理想と現実/vs-legacy
suzukihoge
14
2k
AWS IaCの注目アップデート 2024年10月版
konokenj
3
3.3k
「今のプロジェクトいろいろ大変なんですよ、app/services とかもあって……」/After Kaigi on Rails 2024 LT Night
junk0612
4
2k
광고 소재 심사 과정에 AI를 도입하여 광고 서비스 생산성 향상시키기
kakao
PRO
0
160
Amazon Qを使ってIaCを触ろう!
maruto
0
370
現場で役立つモデリング 超入門
masuda220
PRO
15
3.1k
みんなでプロポーザルを書いてみた
yuriko1211
0
190
PLoP 2024: The evolution of the microservice architecture pattern language
cer
PRO
0
2.4k
GCCのプラグインを作る / I Made a GCC Plugin
shouth
1
160
cXML という電子商取引の トランザクションを支える プロトコルと向きあっている話
phigasui
3
2.3k
CSC509 Lecture 09
javiergs
PRO
0
140
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
42
2.2k
Designing Experiences People Love
moore
138
23k
Ruby is Unlike a Banana
tanoku
96
11k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
231
17k
Become a Pro
speakerdeck
PRO
25
5k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
27
820
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
43
6.8k
The Cost Of JavaScript in 2023
addyosmani
45
6.7k
Testing 201, or: Great Expectations
jmmastey
38
7.1k
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
Why Our Code Smells
bkeepers
PRO
334
57k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
Transcript
Fast Approximate Nearest Neighbour Search with Numba
What are Nearest Neighbours?
Given a set of points with A distance measure between
them…
… and a new “query point” …
Find the closest points to the query point
Why Nearest Neighbors?
Nearest Neighbour computations are at the heart of many machine
learning algorithms
KNN-Classi fi ers KNN-Regressors
Clustering https://commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg by Chire https://www. fl ickr.com/photos/trevorpatt/41875889652/in/photostream/ by Trevor Patt
HDBSCAN DBSCAN Single Linkage Clustering Spectral Clustering
Dimension Reduction http://lvdmaaten.github.io/tsne/ http://www-clmc.usc.edu/publications/T/tenenbaum-Science2000.pdf t-SNE Isomap Spectral Embedding UMAP
Recommender Systems Query Expansion
Why Approximate Nearest Neighbours?
Finding exact nearest neighbours is hard
Approximate nearest neighbour search trades accuracy for performance
How Do You Find Nearest Neighbors?
Using Trees
Hierarchically divide up the space into a tree
Bound the search using the tree structure (And the triangle
inequality)
KD-Tree
Ball Tree
Random Projection Tree
Using Graphs
How do you search for nearest neighbours of a query
using a graph? Malkov and Yashunin, 2018 Dong, Moses and Li, 2011 Iwasaki and Miyazaki, 2018
Start with a nearest neighbour graph of the training data
Assume we now want to fi nd neighbours of a query point
Choose a starting node in the graph (potentially randomly) as
a candidate node
None
Look at all nodes connected by an edge to the
best untried candidate node in the graph Add all these nodes to our potential candidate pool
None
Sort the candidate pool by closeness to the query point
Truncate the pool to the k best candidates
None
Return to the Expansion step unless we have already tried
all the candidates in the pool
Stop when there are no untried candidates in the pool
None
None
None
None
Looks inef fi cient Scales up well
None
Graph adapts to intrinsic dimension of the data
But how do we build the graph?!
The algorithm works (badly) even on a bad graph
Run one iteration of search for every node Update the
graph with new better neighbours Search is better on the improved graph
None
None
None
None
None
Perfect accuracy of neighbours is not assured We can get
an approximate knn-graph quickly
How Do You Make it Fast?
Algorithm tricks
Query node Expansion node Current neighbour
Neighbour A Neighbour B Common node
Hubs have a lot of neighbours!
None
None
Sample neighbours when constructing the graph Prune away edges before
performing searches
Necessary to fi nd green’s nearest neighbour Necessary to fi
nd blue’s nearest neighbour Not required since we can traverse through blue
For search remove the longest edges of any triangles in
the graph
Initialize with Random Projection Trees
Implementation tricks
None
Pro fi le and inspect llvm code for innermost functions
Type declarations and code choices can help the compiler a lot!
@numba.jit def euclidean(x, y): return np.sqrt(np.sum((x - y)**2)) Query benchmark
took 12s
@numba.jit(fastmath=True) def euclidean(x, y): result = 0.0 for i in
range(x.shape[0]): result += (x[i] - y[i])**2 return np.sqrt(result) Query benchmark took 8.5s
@numba.njit( numba.types.float32( numba.types.Array( numba.types.float32, 1, "C", readonly=True ), numba.types.Array( numba.types.float32,
1, "C", readonly=True ), ), fastmath=True, locals={ "result": numba.types.float32, "diff": numba.types.float32, "i": numba.types.uint16, }, ) def squared_euclidean(x, y): result = 0.0 dim = x.shape[0] for i in range(dim): diff = x[i] - y[i] result += diff * diff return result Query benchmark took 7.6s
Custom data structure implementations to help numba for often called
code
@numba.njit( "i4(f4[ :: 1],i4[ :: 1],f4,i4)", ) def simple_heap_push(priorities, indices,
p, n): ...
Numba has signi fi cant function call overhead with large
parameters Use closures over static data instead
@numba.njit() def frequently_called_function(param, large_readonly_data): ... val = access(large_readonly_data, param) ...
def create_frequently_called_function(large_readonly_data): @numba.njit() def closure(param): ... val = access(large_readonly_data, param) ... return closure
How Does it Compare?
Performance
We can test query performance using ann-benchmarks https://github.com/erikbern/ann-benchmarks
Consider the whole accuracy / performance trade-off space
vs
None
None
None
None
Caveats: •Newer algorithms and implementations •Hardware can makes a big
difference •No GPU support for pynndescent
Features
Out of the box support for a wide variety of
distance measures: Euclidean Cosine Hamming Manhattan Minkowski Chebyshev Jaccard Haversine Dice Wasserstein Hellinger Spearman Correlation Mahalanobis Canberra Bray-Curtis Angular TSSS +20 more measures https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa By Maarten Grootendorst
Custom metrics in Python (using numba)
Support for sparse data
Drop-in replacement for sklearn KNeighborsTransformer
Summary
pip install pynndescent conda install pynndescent https://github.com/lmcinnes/pynndescent
[email protected]
@leland_mcinnes
Questions?
[email protected]
@leland_mcinnes