Upgrade to Pro — share decks privately, control downloads, hide ads and more …

コンペティションから見るAI創薬/AI drug discovery in the view of competitions

m_mochizuki
March 18, 2019

コンペティションから見るAI創薬/AI drug discovery in the view of competitions

日本オミックス医学会シンポジウム 発表資料
場所: 東京医科歯科大学
日付: 2019/3/18

2018/3/20 誤記修正
2018/3/21 誤記修正

m_mochizuki

March 18, 2019
Tweet

More Decks by m_mochizuki

Other Decks in Research

Transcript

  1. a I (
    M A M89 :)
    3 /21 1 / 0/
    )
    ) A c

    View Slide

  2. s ( 21 1- 40
    z ( u 76 6 7
    ) ) h o 7M
    M AI(
    : 7 r a
    ( k
    c
    7
    i

    View Slide

  3. 3
    IS o J P
    123 32
    0 J P T
    0 J P T
    0 J P T
    6 n
    0 J P T
    4 DJ PG
    C A 7E5 D4J A
    C C eB E5

    View Slide





  4. P GI
    gGI
    M ci 06?5: 0 65A 4? 5 B C 84 6 76
    .?4 8 11ae h
    M ci 2 3 gM N
    M ci g T
    M

    View Slide




  5. View Slide

  6. 6
    AI=

    +.9<*!%;7BG
    =?4D

    +.1:/"(*
    5C0 A,"(&$
    =
    %&' )6F5C=?
    >@8E3
    -23

    View Slide




  7. View Slide





  8. <;
    .%7
    FC*
    '4
    <;p53L. +

    '&(AE!1IBM)
    DK5=(FC*'40

    BH1G .%7D/:36I
    (-"8$)
    .%7>@1GJD
    ↑ # 2?, )9

    View Slide

  9. 1

    View Slide

  10. 1 0 0
    n RAK ) S2 AK K
    n g 1 0 Ra
    Ra 0 5 Q e
    (
    425 %10/7&
    (!
    *
    ,
    10/(!
    $%)+.#
    #
    "
    425
    'Kaggle(063(-

    View Slide

  11. 1
    n eh a kGn f R / :/
    V Fod eh aFH lm g Sb
    RHMS A
    n V . :/ i eh
    a cS A
    p 2 / /: / ./: :.

    View Slide

  12. M ,1 42 , 2 , 0 0 9 22 3.
    n
    ?
    n
    :

    AC

    View Slide

  13. View Slide

  14. 4 1
    #)$
    '

    !%(
    *
    $

    (Convolutional Neural Network)
    $
    %"
    &
    &


    View Slide

  15. 1
    $)&
    ("

    Fingerprint/Descriptor
    %

    &
    (Graph Convolutional Neural Network)
    &
    !
    #
    '
    '

    View Slide

  16. n 1 G 6 C
    n N
    : Altae-Tran et al, ACS Cent. Sci.,2017,3(4), pp 283–293


    View Slide





  17. View Slide

  18. n ( ) P O N B A
    n I 24 0 2 1 1
    Virtual screening…





    1

    2

    3


    View Slide

  19. n N
    G
    n K
    C

    967
    (#

    &).0
    *!
    "%*@

    =1;=>*

    *(400)
    4?:“”*
    */$,
    862?3'

    +(-OK

    View Slide

  20. 7 8 T d fng
    ] N mi a
    M hmi ]
    C [ Ct ep r
    a 21 . ? 0 ?9 5 ( ) ) (
    )( 02
    s y , 9 T
    u CG ] NaY I

    View Slide

  21. ( 7 2
    Extended Connectivity Fingerprint
    Functional Connectivity Fingerprint
    Topological Torsions
    Atom Pairs Fingerprint
    RDKit Fingerprint
    Avalon fingerprint
    !fingerprint (6)
    70
    Random Forest
    Extremely Randomized Trees
    Gradient Boosted Trees
    Multilayer perceptron
    Support Vector Regression
    !
    $)%(&' (5)
    65 = 30#
    Elastic Net Pfinal
    Level 0
    Level 1
    "
    #

    1 2 ) ):

    View Slide


  22. Fingerprint
    ECFP FCFP TT AP RDK AVLN F-Stacking
    RF 0.848 0.855 0.816 0.686 0.652 0.722 0.892
    ERT 0.869 0.889 0.844 0.798 0.671 0.768 0.907
    GBT 0.852 0.864 0.835 0.808 0.733 0.758 0.891
    MLP 0.802 0.777 0.623 0.814 0.651 0.712 0.895
    SVR 0.856 0.852 0.688 0.763 0.662 0.693 0.877
    L-Stacking 0.890 0.911 0.870 0.881 0.799 0.846 0.930 FL-Stacking


    Level0
    ROC-AUC

    ) 1 ) (0( 72
    n 0 3 0
    0

    View Slide

  23. 2 ( 7 )1)0 3
    5


    IMSBIO () () 1
    8 1
    Univ-shizuoka 1
    PFDrug ()Preferred Networks 1
    kiharalab 1 1
    Graph CNN

    View Slide

  24. 1
    0

    View Slide

  25. 38 5 120
    n 0 u ”Taklbe : ()
    :. 00 1Tcn
    n s T
    n p w Th cn dg
    I I “ L ing
    n r P v T ng D
    n T t p
    o y 2 8: : .2 1 2 - // /: 0:

    View Slide

  26. )0 3 6 ( 2 1
    n Lel an f LN b i -
    b i -/) -
    n U N gc
    d -
    s
    n D - b i ( 1) -1- P
    t ( 1) )
    vo el an (

    View Slide

  27. )0 37 ( 2 1
    n 24 9: 9 0
    4
    n 1 9 9 56 8
    2 3 W 2 9 4
    O O
    O
    !!!

    View Slide




  28. View Slide

  29. 9 21
    n
    e l ( g
    n
    K
    n
    )
    a )

    View Slide

  30. 20 2 3
    n
    3 t 1
    o r ru 2
    a i 1 o ru ) 2
    l1 ru 1es 2
    1 r f K2
    n
    (( h g g K2

    View Slide

  31. 1 3
    n
    ( )
    )
    n
    :
    )

    View Slide

  32. X 8
    T 9
    8.
    A
    T 9
    8.
    A
    T 9
    8.
    A
    0



    3 T .
    9? A 5 2

    View Slide

  33. (
    • 9)
    : / 51)
    5
    • 1 55
    5
    2 1:023/ 5

    View Slide