$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
コンペティションから見るAI創薬/AI drug discovery in the view ...
Search
m_mochizuki
March 18, 2019
Research
2
1.6k
コンペティションから見るAI創薬/AI drug discovery in the view of competitions
日本オミックス医学会シンポジウム 発表資料
場所: 東京医科歯科大学
日付: 2019/3/18
2018/3/20 誤記修正
2018/3/21 誤記修正
m_mochizuki
March 18, 2019
Tweet
Share
More Decks by m_mochizuki
See All by m_mochizuki
SIGNATE: 日本取引所グループ ファンダメンタルズ分析チャレンジ 1位解法 / the 1st place solution of JPX Fundamentals Analysis Challenge on SIGNATE
m_mochizuki
4
13k
SIGNATE: 日本取引所グループ ファンダメンタルズ分析チャレンジ 暫定1位解法 / the provisional 1st place solution of JPX Fundamentals Analysis Challenge on SIGNATE
m_mochizuki
3
9.6k
MD-DSC研究会講演資料:『機械学習コンペティションの実際とその意義』/ Practice on ML competition and its significance
m_mochizuki
1
1.2k
Other Decks in Research
See All in Research
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
65
35k
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
180
Community Driveプロジェクト(CDPJ)の中間報告
smartfukushilab1
0
100
CoRL2025速報
rpc
3
3.6k
Remote sensing × Multi-modal meta survey
satai
4
650
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
220
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
130
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
8
2.3k
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
120
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
210
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
0
210
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
130
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
510
Chasing Engaging Ingredients in Design
codingconduct
0
80
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
120
The SEO identity crisis: Don't let AI make you average
varn
0
34
How to make the Groovebox
asonas
2
1.8k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
400
Are puppies a ranking factor?
jonoalderson
0
2.4k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
47k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Transcript
a I ( M A M89 :) 3 /21 1
/ 0/ ) ) A c
s ( 21 1- 40 z ( u 76 6
7 ) ) h o 7M M AI( : 7 r a ( k c 7 i
3 IS o J P 123 32 0 J P
T 0 J P T 0 J P T 6 n 0 J P T 4 DJ PG C A 7E5 D4J A C C eB E5
P GI gGI M ci 06?5:
0 65A 4? 5 B C 84 6 76 .?4 8 11ae h M ci 2 3 gM N M ci g T M
6 AI= +.9<*!%;7BG =?4D +.1:/"(&#*
5C0 A, "(&$ = %&' )6F5C=? >@8E3 -23
<; .%7 FC*
'4 <;p53L. + '&(AE!1IBM) DK5=(FC*'40 BH1G .%7D/:36I (-"8$) .%7>@1G JD ↑ # 2?, )9
1
1 0 0 n RAK ) S2 AK K n
g 1 0 Ra Ra 0 5 Q e ( 425 %10/7& (! * , 10/(! $%)+.# # " 425 'Kaggle(063(-
1 n eh a kGn f R / :/ V
Fod eh aFH lm g Sb RHMS A n V . :/ i eh a cS A p 2 / /: / ./: :.
M ,1 42 , 2 , 0 0 9 22
3. n ? n : AC
None
4 1 #)$ ' !%( * $
(Convolutional Neural Network) $ %" & &
1 $)& (" Fingerprint/Descriptor % & (Graph
Convolutional Neural Network) & ! # ' '
n 1 G 6 C n N : Altae-Tran et
al, ACS Cent. Sci.,2017,3(4), pp 283–293
n ( ) P O N B A n I
24 0 2 1 1 Virtual screening… 1 2 3
n N G n K C 967 ( #
&).0 *! "%*@ =1;=>* *(400) 4?:<A5).0 “”* */$, 862?3' +(-OK
7 8 T d fng ] N mi a M
hmi ] C [ Ct ep r a 21 . ? 0 ?9 5 ( ) ) ( )( 02 s y , 9 T u CG ] NaY I
( 7 2 Extended Connectivity Fingerprint Functional Connectivity Fingerprint Topological
Torsions Atom Pairs Fingerprint RDKit Fingerprint Avalon fingerprint !fingerprint (6) 70 Random Forest Extremely Randomized Trees Gradient Boosted Trees Multilayer perceptron Support Vector Regression ! $)%(&' (5) 65 = 30# Elastic Net Pfinal Level 0 Level 1 " # 1 2 ) ):
Fingerprint ECFP FCFP TT AP RDK AVLN F-Stacking RF
0.848 0.855 0.816 0.686 0.652 0.722 0.892 ERT 0.869 0.889 0.844 0.798 0.671 0.768 0.907 GBT 0.852 0.864 0.835 0.808 0.733 0.758 0.891 MLP 0.802 0.777 0.623 0.814 0.651 0.712 0.895 SVR 0.856 0.852 0.688 0.763 0.662 0.693 0.877 L-Stacking 0.890 0.911 0.870 0.881 0.799 0.846 0.930 FL-Stacking Level0 ROC-AUC ) 1 ) (0( 72 n 0 3 0 0
2 ( 7 )1)0 3 5
IMSBIO () ( ) 1 8 1 Univ-shizuoka 1 PFDrug ()Preferred Networks 1 kiharalab 1 1 Graph CNN
1 0
38 5 120 n 0 u ”Taklbe : () :.
00 1Tcn n s T n p w Th cn dg I I “ L ing n r P v T ng D n T t p o y 2 8: : .2 1 2 - // /: 0:
)0 3 6 ( 2 1 n Lel an f
LN b i - b i -/) - n U N gc d - s n D - b i ( 1) -1- P t ( 1) ) vo el an (
)0 37 ( 2 1 n 24 9: 9 0
4 n 1 9 9 56 8 2 3 W 2 9 4 O O O !!!
9 21 n e l ( g n K n
) a )
20 2 3 n 3 t 1 o r ru
2 a i 1 o ru ) 2 l1 ru 1es 2 1 r f K2 n (( h g g K2
1 3 n ( ) ) n : )
X 8 T 9 8. A T 9 8. A
T 9 8. A 0 3 T . 9? A 5 2
( • 9) : / 51) 5 • 1 55
5 2 1:023/ 5