Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
項目応答理論を用いた 演習問題出題システム
Search
Makoto Ikami
June 17, 2023
Technology
1
600
項目応答理論を用いた 演習問題出題システム
大学の研究で「項目応答理論を用いた 演習問題出題システム」を作成しました。
その研究を行った背景やシステムを実際に利用ったデータやアンケートから調査を行った結果をまとめたスライドです。
Makoto Ikami
June 17, 2023
Tweet
Share
More Decks by Makoto Ikami
See All by Makoto Ikami
弊社の紹介と自社プロダクトについて!技術スタックも公開! #phpcon_okinawa
mako5656
1
62
その条件分岐って本当に必要?コードを綺麗に書くために #phpkansai
mako5656
2
2.2k
PHPの基本を楽しく学ぶ!PHP独自の「なぜ?」に迫る #phpcon_okinawa
mako5656
2
1.7k
オブジェクト指向に基づいた ユニットテストのメリット#PHPerKaigi2023
mako5656
1
750
Other Decks in Technology
See All in Technology
[JDDStudy #10] 社内Agent勉強会の取り組み紹介
yp_genzitsu
1
130
Logik: A Free and Open-source FPGA Toolchain
omasanori
0
290
エンタープライズ企業における開発効率化のためのコンテキスト設計とその活用
sergicalsix
1
350
Master Dataグループ紹介資料
sansan33
PRO
1
3.9k
ソフトウェア開発現代史: 55%が変化に備えていない現実 ─ AI支援型開発時代のReboot Japan #agilejapan
takabow
1
1.8k
Design and implementation of "Markdown to Google Slides" / phpconfuk 2025
k1low
1
390
フライトコントローラPX4の中身(制御器)を覗いてみた
santana_hammer
1
140
技術の総合格闘技!?AIインフラの現在と未来。
ebiken
PRO
0
250
Flutterで実装する実践的な攻撃対策とセキュリティ向上
fujikinaga
1
340
CloudFormationコンソールから、実際に作られたリソースを辿れるようになろう!
amixedcolor
1
170
Lazy Constant - finalフィールドの遅延初期化
skrb
0
130
ubuntu-latest から ubuntu-slim へ移行しよう!コスト削減うれしい~!
asumikam
0
470
Featured
See All Featured
A Modern Web Designer's Workflow
chriscoyier
697
190k
A Tale of Four Properties
chriscoyier
161
23k
Statistics for Hackers
jakevdp
799
220k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Fireside Chat
paigeccino
41
3.7k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Scaling GitHub
holman
463
140k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Transcript
項目応答理論を用いた 演習問題出題システム
背景 • 近年学校教育におけるスマートフォンやタブレット端 末上でのデジタル教材の利用が増加 • アメリカでは州単位で導入が検討されており、2016年4月 時点で約80%の学校がデジタル教科書を使用している[1] • 日本の文部科学省の有識者会議 •
2020年度から「デジタル教科書」を全国の小中高校で使え るようにするとの中間報告をまとめた[2] 1 [1] [2] Digital Content Goes to School: Trends in K-12 Classroom E-Learning. http://www.ascd.org/ASCD/pdf/siteASCD/misc/DigitalContentTrendsReport.pdf.より参照 文部科学省.http://www.mext.go.jp/a_menu/other/1411332.htm.より参照
背景 • 日本でも学生・生徒が授業をタブレット端末で受ける 時代が来るのもそう遠くない • 授業の全てを完全にデジタル化 Web上で演習問題の出題および 評価システムの開発 2
Web上での演習出題システム • メリット • 学生は適切な難易度の演習問題を受けることができる • 教師は多数の作業から解放 • 演習問題の作成 •
解答用紙にマークをつけて採点 3
目的 • 自動生成された演習問題の出題および受験者の 能力推定を行う教育システムの開発 • 先行研究で小野ら[3]が演習問題の出題および受験 者の能力推定を行う教育システムの実装および実験 • 大学理工系学部:微分方程式 Webアプリとしての実装および実験
4 小野,小中. 電気学会論文誌C2018年138巻5号,pp.627-634 [3]
目次 1. 項目応答理論での能力推定 2. Webアプリでの実装 3. 試用実験 5
目次 1. 項目応答理論での能力推定 2. Webアプリでの実装 3. 試用実験 6
項目応答理論での能力推定 • 学生に適切な難易度の問題を受けられるシステムを 実現するために項目応答理論を用いる • テスト理論の1つ • 学生の能力と問題の難易度を推定 7
ロジスティックモデル • 受験者の能力と問題の項目特性からその問題に対する正 答確率を求めるモデル • 3パラメータロジスティックモデル(3PLM) 8
逐次推定法 • 正誤から能力推定値を更新する方法として逐次推 定法を利用 9 問題 1 2 3 4
1 0 1 0 0 1 0.5 1.5 問題数
目次 1. 項目応答理論での能力推定 2. Webアプリでの実装 3. 試用実験 10
Webアプリでの実装 • 自動生成した問題はパラメータや数式の記述などの組としてサ ーバーにデータベースとして蓄積 • サーバーから受験者の能力に適切な難易度の問題を出題 • 問題の正誤から受験者の能力を推定しデータベースに蓄積 11
12
Webアプリでの実装 • 仕様 • 2階微分方程式の計算問題で択一式 • 利用者の能力に近い難易度の演習問題の出題 • 折れ線グラフで自分の能力値を確認できる •
過去に解いた問題を確認できる 13
出題形式 斉次形 非斉次形 • 2階微分方程式の計算問題で択一式 14 • 5問を1セット 難易度:★☆☆☆☆
問題の種類 15 微分方程式 斉次形 非斉次形 極が実数のみ 極が複素数のみ 右辺に多項式を含む 右辺に指数関数を含む 右辺に三角関数を含む
利用者の能力と問題の難易度 16 -2.0 -0.4 1.2 3.05 4 6 ★6 ★5
★4 ★3 ★2 ★1 ★0 項目難易度
利用者の能力と問題の難易度 17 斉次系で極が実数のみ (例) 右辺が多項式を含む (例) -0.4 1.2 ★1 ★2
★3 ★3の問題×2, ★2の問題×3 ★2の問題×5 ★2の問題×4, ★1の問題×1 ★2の問題×3, ★1の問題×2 ★3の問題×1, ★2の問題×4 ・・・ 右辺が指数を含む (例) ・・ 項目難易度 能力値 利用者の能力値0
出題の流れ 18 1.データベースから利用者の能力値を取得 2.利用者の能力値から出題される問題を選定 3.正誤結果から利用者の能力値が更新 • 利用者の能力に近い難易度の演習問題の出題
目次 1. 項目応答理論での能力推定 2. Webアプリでの実装 3. 試用実験 19
試用実験 • 名城大学情報工学科の「応用解析」受講者の78名 • 実験目的や調査項目を説明した後実際にシステムを使用 してもらいアンケート調査 • 条件 • 試用実験全体で60分間
• 5問1セットを7分 • 3セット以上 20
アンケート調査 21 70% • 質問1: 受講者の能力に応じて適切な難易度を出題するシステムを導入 することにより受講者の能力は向上すると思いますか? • 質問2: 新しい演習問題を解答するにつれて自分の能力にあった難易
度の問題が提示されたと思いますか? 90%
アンケート調査 22 0 2 4 6 8 思う やや思う やや思わない
思わない 0.6 難易度の変化量 • 質問3: 新しい演習問題を解答するにつれて問題の難しさに変化を 感じましたか?
アンケート調査 23 難易度の変化 少ない 多い 感じた 6人(7.79%) 54人(70.13%) 感じない 6人(7.79%)
11人(14.29%) • 質問3: 新しい演習問題を解答するにつれて問題の難しさに 変化を感じましたか? 78%の人が一致
まとめ • 受験者の能力推定を伴う演習問題の自動出題シス テムをWebアプリとして実装および実験を行った • 多くの受講者は問題の難易度が調整されるシステムが受 講者の能力向上に寄与しそうであると期待している • 今後の課題 •
授業内1時間での制限がある状態で試用実験行ったため 長期間での調査が必要である 24