Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Improving Word Sense Disambiguation in Neural M...

masaya82
July 25, 2018
110

Improving Word Sense Disambiguation in Neural Machine Translation with Sense Embeddings

masaya82

July 25, 2018
Tweet

More Decks by masaya82

Transcript

  1. Improving Word Sense Disambiguation in Neural Machine Translation with Sense

    Embeddings Annette Rios and Laura Mascarell and Rico Sennrich 2018 7/25 文献紹介 長岡技術科学大学 自然言語処理研究室 福嶋 真也 Proceedings of the Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 11–19 Copenhagen, Denmark, September 711, 2017.
  2. 2 Abstract • NMTにおけるWSDの能力は定量化されていない。 • NMTにおけるWSDの能力を評価するための新しいcloss – lingual WSD task

    をデザインした。 • German-English, German-Frenchでそれぞれテストデー タを作成し、評価を行った。
  3. 7 Approach • ベースラインと2つのWSDの手法を用いる。 ・ベースライン:最も頻出する意味を用いる。 ・Sense Embeddings: SenseGram(Pelevina et al.,

    2016)を用いてSense Embeddingsを計算、学習して共起表現から語義を決定する手 法。 ・Lexical chain: SenseGramを用いて意味的に似ている語を集め、それぞれの embeddingを連結させたものを語のベクトル表現として用いる 手法。
  4. 8 Evaluation • 2つのNMTシステムを使用。 ・学習:210万文(EuroparlとNews Commentaryより) ・byte pair encoding(Sennrich et

    al.,2016b)とNematus (Sennrich et al., 2017)を使用 ・Adam (Kingma and Ba, 2015)を使い、パラメータを更新 ・minibatch size : 80