Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
トラフィック特徴量の時系列データにおける相関特性を用いた変化点からの異常検出
Search
MATSUMOTO Ryosuke
PRO
January 22, 2014
Technology
0
5.9k
トラフィック特徴量の時系列データにおける相関特性を用いた変化点からの異常検出
MATSUMOTO Ryosuke
PRO
January 22, 2014
Tweet
Share
More Decks by MATSUMOTO Ryosuke
See All by MATSUMOTO Ryosuke
問いを起点に、社会と共鳴する知を育む場へ
matsumoto_r
PRO
0
710
さくらインターネット研究所 アップデート2025年
matsumoto_r
PRO
0
780
リモートワークにおけるパッシブ疲労
matsumoto_r
PRO
6
5.4k
エンジニアのキャリアパスはどう描く? まつもとりーさんと考える後悔しないキャリア選択
matsumoto_r
PRO
10
2.3k
まつもとりーのこれまでとCOGNANOのこれから
matsumoto_r
PRO
0
330
2022年の研究所の評価制度振り返りと今後
matsumoto_r
PRO
0
810
VUCAワールドから紐解く組織や評価制度の変遷と再設計
matsumoto_r
PRO
9
26k
コンテナの研究開発から学ぶLinuxの要素技術
matsumoto_r
PRO
2
1.6k
開発者体験をさらに向上させる 事業と研究との連携
matsumoto_r
PRO
2
2.4k
Other Decks in Technology
See All in Technology
AI/MLのマルチテナント基盤を支えるコンテナ技術
pfn
PRO
4
660
あなたの知らないDateのひみつ / The Secret of "Date" You Haven't known #tqrk16
expajp
0
110
【保存版】「ガチャ」からの脱却:Gemini × Veoで作る、意図を反映するAI動画制作ワークフロー
nekoailab
0
130
プロダクトマネジメントの分業が生む「デリバリーの渋滞」を解消するTPMの越境
recruitengineers
PRO
1
130
一億総業務改善を支える社内AIエージェント基盤の要諦
yukukotani
9
2.7k
Active Directory 勉強会 第 6 回目 Active Directory セキュリティについて学ぶ回
eurekaberry
16
5.7k
21st ACRi Webinar - AMD Presentation Slide (Nao Sumikawa)
nao_sumikawa
0
140
シンプルを極める。アンチパターンなDB設計の本質
facilo_inc
1
970
Design System Documentation Tooling 2025
takanorip
1
870
小規模チームによる衛星管制システムの開発とスケーラビリティの実現
sankichi92
0
180
Excelデータ分析で学ぶディメンショナルモデリング ~アジャイルデータモデリングへ向けて~ by @Kazaneya_PR / 20251126
kazaneya
PRO
3
820
ブラウザ拡張のセキュリティの話 / Browser Extension Security
flatt_security
0
250
Featured
See All Featured
A Modern Web Designer's Workflow
chriscoyier
697
190k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Writing Fast Ruby
sferik
630
62k
Agile that works and the tools we love
rasmusluckow
331
21k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
The Pragmatic Product Professional
lauravandoore
37
7k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Transcript
1/29 B
2/29 ⇒
3/29 IDS( ) ⇒ ⇒
4/29 ↓ ▪ ⇒ ⇒
5/29 DoS ⇒
6/29 [4] ChangeFinder ⇒ ⇒ DoS [4] J. Takeuchi and
K. Yamanishi, “A Unifying Framework for Detecting Outliers and Change Points from Time Series,” IEEE transactions on Knowledge and Data Engineering, pp.482-492, 2006.
7/29
8/29
9/29 ▪ ⇒ [ 1] HTTP ⇒ ⇒ [ 2]
⇒ ⇒
10/29 ▪ ⇒ 1 2 ⇒ 3 ⇒
11/29 (A) (A) (B) ▪ A B IP IP ⇒
DoS
12/29 DoS ▪ DoS HTTP IP ⇒ ⇒ DoS ⇒
13/29 ( ) IP. > IP. : ( ) 00:37:07
IP 172.16.114.50.http > 206.48.44.50.2222: . ack 5841 win 32120 00:37:17 IP 172.16.114.50.http > 206.48.44.90.2313: . ack 2921 win 32120 00:37:25 IP 206.48.44.40.2222 > 172.16.114.30.http: . (256) ack 8192 win 31744 00:37:25 IP 206.48.44.50.2222 > 172.16.114.40.http: . (1320) ack 8192 win 31744 00:37:38 IP 206.48.44.60.2222 > 172.16.114.70.http: . (156) ack 8192 win 31744 00:37:49 IP 206.48.44.90.2313 > 172.16.114.50.http: . (1460) ack 8192 win 31744 00:37:58 IP 206.48.44.90.2313 > 172.16.114.50.http: . (1460) ack 8192 win 31744 [ ] = 7 7 4 5 [ = ⇒ HTTP [ ] = 4 [ ] = 5 ⇒ DoS 1
14/29 ( DoS ) IP. > IP. : ( )
00:38:07 IP 172.16.114.50.http > 206.48.44.50.2222: . ack 5841 win 32120 00:38:17 IP 172.16.114.50.http > 206.48.44.90.2313: . ack 2921 win 32120 00:38:25 IP 206.48.44.50.2222 > 172.16.114.50.http: . (320) ack 8192 win 31744 00:38:25 IP 206.48.44.50.2222 > 172.16.114.50.http: . (320) ack 8192 win 31744 00:38:38 IP 206.48.44.50.2222 > 172.16.114.50.http: . (320) ack 8192 win 31744 00:38:49 IP 206.48.44.90.2313 > 172.16.114.50.http: . (320) ack 8192 win 31744 00:38:58 IP 206.48.44.90.2313 > 172.16.114.50.http: . (320) ack 8192 win 31744 [ ] = 7 7 5 [ = ⇒ HTTP [ ] = 1 [ ] = 5 ⇒ DoS ⇒ ⇒
15/29 ▪ ⇒ ⇒ [ 1] IP [ 2]
16/29 FIN ACK FIN ACK ACK FIN ACK FIN SYN
ACK( ) SYN( ) ACK SYN ACK SYN FIN 3way-handshake
17/29 SYN ACK( ) SYN( ) RST SYN FIN SYN
FIN
18/29 SYN FIN ⇒ ⇒ 1 SYN FIN
19/29 ▪ ( )( ) ( ) ( ) ∑
∑ ∑ = = = − − − − N i i N i i N i i i y y x x y y x x 1 2 1 2 1 N ⇒ 1 ( ) ( ) { }( ) N i y x y x i i . , 2 , 1 , , L = = y x, : N ※
20/29 ChangeFinder[4] 1 T ⇒ T ⇒ T t x
t x t x
21/29 ChangeFinder[4] 2 1 t x t x 2 ⇒
22/29
23/29 ▪MIT LINCOLN IDS IDS Week5 Tuesday (tcpdump ) -
HTTP DoS 1 - HTTP DoS 211 795 - 616 N = 20 - [ 1] HTTP DoS ⇒ DoS ⇒ [ ] - [ 2] SYN FIN ⇒
24/29 (1) 0 10000 20000 30000 40000 50000 60000 70000
80000 1 101 201 301 401 501 601 701 801 minute packet_count 0 5 10 15 20 25 CF_score packet_80 CF_score 0 10000 20000 30000 40000 50000 60000 70000 80000 1 101 201 301 401 501 601 701 801 minute packet_count 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 CF_score packet_80 CF_score ▪ HTTP DoS DoS ◦ ◦ ◦ × ⇒ DoS ⇒ HTTP
25/29 (2) – 0 500 1000 1500 2000 2500 3000
3500 4000 4500 5000 1 101 201 301 401 501 601 701 801 minute packet_count 0 5 10 15 20 25 30 CF_score syn_packet CF_score 0 100 200 300 400 500 600 700 1 101 201 301 401 501 601 701 801 minute packet_count 0 5 10 15 20 25 30 CF_score fin_packet CF_score SYN FIN DoS DoS
26/29 (2) – 0 1 2 3 4 5 6
7 8 1 101 201 301 401 501 601 701 801 minute CF_score syn_fin_correl DoS DoS DoS
27/29
28/29 ▪ ⇒ ⇒ ▪ ⇒
29/29 ▪ ⇒ 0 ⇒ ▪ ⇒ ⇒ ⇒ ▪
⇒ ⇒