Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Serverless Functions Azure, AWS, GCP
Search
Mikhail Shilkov
October 30, 2019
Programming
0
220
Serverless Functions Azure, AWS, GCP
Comparison of Function-as-a-Service offerings of AWS, Azure, and GCP
Mikhail Shilkov
October 30, 2019
Tweet
Share
More Decks by Mikhail Shilkov
See All by Mikhail Shilkov
From YAML to TypeScript: Developer’s View on Cloud Automation
mikhailshilkov
0
78
Cloud Management Superpowers with Pulumi
mikhailshilkov
0
480
Cloud Superpowers with Pulumi and F#
mikhailshilkov
1
480
Cloud Management Superpowers with Pulumi and .NET
mikhailshilkov
0
110
Managing Any Cloud with .NET
mikhailshilkov
0
67
Azure Infrastructure as C# and F#
mikhailshilkov
0
240
Infrastructure as Software
mikhailshilkov
0
400
Azure Infrastructure as C# and F#
mikhailshilkov
0
300
Pulumi: Cloud Infrastructure as C# and F#
mikhailshilkov
0
790
Other Decks in Programming
See All in Programming
CSC305 Lecture 01
javiergs
PRO
1
400
uniqueパッケージの内部実装を支えるweak pointerの話
magavel
0
920
Playwrightはどのようにクロスブラウザをサポートしているのか
yotahada3
7
2.3k
Model Pollution
hschwentner
1
180
monorepo の Go テストをはやくした〜い!~最小の依存解決への道のり~ / faster-testing-of-monorepos
convto
2
390
高度なUI/UXこそHotwireで作ろう Kaigi on Rails 2025
naofumi
4
3.5k
Чего вы не знали о строках в Python – Василий Рябов, PythoNN
sobolevn
0
160
私はどうやって技術力を上げたのか
yusukebe
43
17k
なぜGoのジェネリクスはこの形なのか? Featherweight Goが明かす設計の核心
ryotaros
7
1k
GraphQL×Railsアプリのデータベース負荷分散 - 月間3,000万人利用サービスを無停止で
koxya
1
1.1k
AI Coding Meetup #3 - 導入セッション / ai-coding-meetup-3
izumin5210
0
580
『毎日の移動』を支えるGoバックエンド内製開発
yutautsugi
2
180
Featured
See All Featured
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
54
3k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
51k
Designing for Performance
lara
610
69k
Documentation Writing (for coders)
carmenintech
75
5k
Speed Design
sergeychernyshev
32
1.1k
The Pragmatic Product Professional
lauravandoore
36
6.9k
The Invisible Side of Design
smashingmag
301
51k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Build your cross-platform service in a week with App Engine
jlugia
232
18k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
How to train your dragon (web standard)
notwaldorf
96
6.3k
The Language of Interfaces
destraynor
162
25k
Transcript
Serverless Functions Azure, AWS, GCP Cloud Republic Event | Utrecht
| October 30, 2019
• Software developer • Cloud • Serverless • Functional programming
• Microsoft Azure MVP https://mikhail.io @MikhailShilkov Mikhail Shilkov
Function-as-a-Service Cloud Offerings
Hosting Plans Configurability Languages Programming Model Concurrency Isolation Cost Orchestrations
Cold Starts Scalability Conclusions Q&A
Hosting Plans
Azure Functions
AWS Lambda and Google Functions
Configurability
Azure Functions Consumption
AWS Lambda Memory Allocation
GCF Memory Allocation
Azure Functions Premium
Programming Languages
Language Azure Functions AWS Lambda Google Cloud Functions .NET (C#/F#)
GA GA - Node.js (JS/TS) GA GA GA JVM (Java) GA GA - Python GA (Linux only) GA GA PowerShell Preview GA - Go - GA GA Ruby - GA - Comparison Table
Programming Model
Azure Functions: Triggers and Bindings [FunctionName("MyFunc")] public static void Work(
[TimerTrigger("0 */10 * * * *")] TimerInfo timer, [Blob("filename")] Stream stream, [Queue("myqueue")] out string message) { // body }
AWS: JSON Input and Output exports.handler = async (event) =>
{ const response = { statusCode: 200, body: JSON.stringify('Hello from Lambda!'), }; return response; };
ASP.NET Core on AWS Lambda public class LambdaFunction : Amazon.Lambda.AspNetCoreServer.APIGatewayProxyFunction
{ protected override void Init(IWebHostBuilder builder) { builder .UseContentRoot(Directory.GetCurrentDirectory()) .UseStartup() .UseApiGateway(); } }
GCP: Express-like API exports.helloWorld = (req, res) => { let
message = req.query.message || req.body.message || 'Hello World!'; res.status(200).send(message); };
Deployment Artifacts
Concurrency and Isolation
Resource Pool
Resource Pool
Resource Pool
Resource Pool
Resource Pool
Resource Pool
Resource Pool
Client Value Resource Utilization
Tradeoff
Server, VM, container, process, ...
Server, VM, container, process, ... VM VM
Server, VM, container, process, ... VM VM
Server, VM, container, process, ... VM VM
Server, VM, container, process, ... VM VM
Azure Functions 12
Legacy of App Service
Legacy of App Service
App Service: scalability
App Service: scalability
Function App Consumption Plan
Isolation Layers
Simultaneous Executions
Simultaneous Executions
Simultaneous Executions
Simultaneous Executions
AWS Lambda 22
AWS Lambda
AWS Lambda
AWS Lambda
Integrating with AWS Lambda
Simultaneous Executions in AWS Lambda
Isolation Layers
Simultaneous Executions in AWS Lambda
Simultaneous Executions in AWS Lambda
Simultaneous Executions in AWS Lambda
• • • • AWS Firecracker
Isolation Layers with Firecracker
«Naive» Function Composition
Statistical Multiplexing
Google Cloud Functions 31
Google Cloud Functions
Cost
Nominal Pricing
Nuances
Azure Simultaneous Executions
AWS Lambda: HTTP Integration
AWS Lambda: HTTP Integration
Orchestration
Azure Logic Apps
AWS Step Functions
Azure Durable Functions public static async Task Sequential(DurableOrchestrationContext context) {
var conf = await context.CallActivityAsync<ConfTicket> ("BookConference", "ServerlessDays"); var flight = await context.CallActivityAsync<FlightTickets> ("BookFlight", conf.Dates); await context.CallActivityAsync("BookHotel", flight.Dates); }
Performance and Scalability
Ideal Scalability: Throughput
Ideal Scalability: Latency
Customer Value Cloud Resource Utilization
Cold Starts
Example: Loading a map
Example: Loading a map
Example: Loading a map
Cold Start
Warm Start
Period Before a Subsequent Cold Start
Cold Starts: Language Comparison
Dependencies Add to Cold Start
Fighting Cold Starts: Azure [FunctionName("Warmer")] public static void WarmUp( [TimerTrigger("0
*/10 * * * *")] TimerInfo timer) { // No need to do anything }
AWS: Single instance warming
AWS: Multiple instance warming
ETL AT SCALE: Asynchronous data processing
Async Pipelines
Experiments with Queues
AWS Lambda Processing 100k SQS Messages
GCF Processing 100k Pub/Sub Messages
Azure Functions Processing 100k Queue Messages
CPU-intensive workload on AWS Lambda
CPU-intensive workload on Google Cloud Functions
CPU-intensive workload on Azure Functions
AWS Processing Speed per Reserved RAM
HTTP AT SCALE: Serving traffic of StackOverflow
Serving StackOverflow-like traffic
Requests/sec during the load test
0 200 400 600 800 1000 1200 Azure Functions: Response
Percentiles (ms)
0 200 400 600 800 1000 1200 Azure Functions: Response
Percentiles (ms)
0 200 400 600 800 1000 1200 Azure Functions: Instances
Google Functions: Response Percentiles (ms)
Google Functions: Response Percentiles (ms)
0 200 400 600 800 1000 1200 Google Functions: Instances
0 200 400 600 800 1000 1200 AWS Lambda: Response
Percentiles (ms)
0 200 400 600 800 1000 1200 AWS Lambda: Response
Percentiles (ms)
0 200 400 600 800 1000 1200 AWS Lambda: Instances
So, What Should You Choose?
• • • • Follow-up reading (1)
• • • Follow-up reading (2)
None