$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CRDTs - The science behind Phoenix Presence
Search
Maciej Kaszubowski
May 25, 2017
Programming
2
280
CRDTs - The science behind Phoenix Presence
Maciej Kaszubowski
May 25, 2017
Tweet
Share
More Decks by Maciej Kaszubowski
See All by Maciej Kaszubowski
Error-free Elixir
mkaszubowski
0
410
Modular Design in Elixir (ElixirConf EU 2019)
mkaszubowski
2
830
The Big Ball of Nouns
mkaszubowski
0
110
Modular Design in Elixir
mkaszubowski
1
400
Our three years with Elixir
mkaszubowski
0
260
Concurrency Basics for Elixir
mkaszubowski
0
130
Distributed Elixir
mkaszubowski
0
170
Software Architecture
mkaszubowski
0
150
Let it crash - fault tolerance in Elixir/OTP
mkaszubowski
0
500
Other Decks in Programming
See All in Programming
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
200
令和最新版Android Studioで化石デバイス向けアプリを作る
arkw
0
420
生成AIを利用するだけでなく、投資できる組織へ
pospome
2
370
ZJIT: The Ruby 4 JIT Compiler / Ruby Release 30th Anniversary Party
k0kubun
0
110
モデル駆動設計をやってみようワークショップ開催報告(Modeling Forum2025) / model driven design workshop report
haru860
0
270
Rediscover the Console - SymfonyCon Amsterdam 2025
chalasr
2
180
AIコーディングエージェント(skywork)
kondai24
0
190
LLM Çağında Backend Olmak: 10 Milyon Prompt'u Milisaniyede Sorgulamak
selcukusta
0
130
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
150
認証・認可の基本を学ぼう前編
kouyuume
0
260
公共交通オープンデータ × モバイルUX 複雑な運行情報を 『直感』に変換する技術
tinykitten
PRO
0
140
Canon EOS R50 V と R5 Mark II 購入でみえてきた最近のデジイチ VR180 事情、そして VR180 静止画に活路を見出すまで
karad
0
130
Featured
See All Featured
Agile that works and the tools we love
rasmusluckow
331
21k
What the history of the web can teach us about the future of AI
inesmontani
PRO
0
370
Being A Developer After 40
akosma
91
590k
How to build a perfect <img>
jonoalderson
0
4.6k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Information Architects: The Missing Link in Design Systems
soysaucechin
0
710
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
21
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
120
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.7k
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
2
60
Believing is Seeing
oripsolob
0
10
The World Runs on Bad Software
bkeepers
PRO
72
12k
Transcript
The Problem
None
Server Node 1 Server Node 2
Node A Node B [User] [User] [User] [] [] [User]
User connects User disconnects
There's no global time
Node A Node B [User] [User] [User] [] [] [User]
User connects User disconnects
Node A Node B [User] [User] [User] [] [] [User]
User connects User disconnects
Node A Node B
P.track(self, "users", "U1", %{})
P.track(self, "users", "U1", %{}) P.list("users") %{"U1" %{metas: [%{phx_ref: "…"}]}}
P.track(self, "users", "U1", %{}) P.list("users") P.track(self, "users", "U2", %{}) %{"U1"
%{metas: [%{phx_ref: "…"}]}}
P.track(self, "users", "U1", %{}) P.list("users") P.track(self, "users", "U2", %{}) P.list("users")
%{"U1" %{metas: [%{phx_ref: "…"}]}, "U2" %{metas: [%{phx_ref: "…"}]}} %{"U1" %{metas: [%{phx_ref: "…"}]}}
P.track(self, "users", "U1", %{}) P.list("users") P.track(self, "users", "U2", %{}) P.list("users")
%{"U1" %{metas: [%{phx_ref: "…"}]}, "U2" %{metas: [%{phx_ref: "…"}]}} P.track(self, "users", "U1", %{}) P.untrack(self, "users", "U1") %{"U1" %{metas: [%{phx_ref: "…"}]}}
P.track(self, "users", "U1", %{}) P.list("users") P.track(self, "users", "U2", %{}) P.list("users")
%{"U1" %{metas: [%{phx_ref: "…"}]}, "U2" %{metas: [%{phx_ref: "…"}]}} P.track(self, "users", "U1", %{}) P.untrack(self, "users", "U1") P.list("users") %{"U1" %{metas: [%{phx_ref: "…"}]}, "U2" %{metas: [%{phx_ref: "…"}]}} P.list("users") %{"U1" %{metas: [%{phx_ref: "…"}]}, "U2" %{metas: [%{phx_ref: "…"}]}} %{"U1" %{metas: [%{phx_ref: "…"}]}}
CRDTs The science behind Phoenix Presence Maciej Kaszubowski
Conflict-free Replicated Data Type
Alternatives
• Single source of truth (DB) • Consensus algorithm •
Resolving conflicts manually
Why CRDTs?
Eventually consistent Highly available Easy to use
Eventually consistent Highly available Easy to use Hard to create
:(
Features
1. Commutative 2. Associative 3. Idempotent x y = y
x (x y) z = x (y z) x x = x
Server Node 1 Server Node 2 Server Node 3
Client Client Client Client Client Client Client Client Client Server
Examples
Counters
Node A Node B +5 5 8 -2 3 +5
User connects User disconnects 0 0 5 3 8
Node A Node B +5 5 8 -2 8 +5
User connects User disconnects 0 0 5 3 13 10
G-Counter Grow-only counter
Node 2: 3 Value=8 Node 1: 5 Node 3: 1
Merge
Node 2: 3 Value=9 Node 1: 6 Node 3: 1
+1 Merge
PN-Counter Positive-Negative Counter
Node 2: P=2 N=2 Value=7 Node 1: P=5 N=2 Node
3: P=4 N=0 3 0 4 Merge
Node 2: P=2 N=2 Value=6 Node 1: P=5 N=3 Node
3: P=4 N=0 2 0 4 +1 Merge
Node 2: P=2 N=2 Value=8 Node 1: P=5 N=3 Node
3: P=6 N=0 2 0 6 +2 +1 Merge
Sets
Node A Node B [User] [User] [User] [] [] [User]
User connects User disconnects
G-Set Grow-only set
Node 2: [1,2] Value=[1,2,3,4] Node 1: [1] Node 3: [3,4]
Merge
Node 2: [1,2] Value=[1,2,3,4,5] Node 1: [1,5] Node 3: [3,4]
Merge
2P-Set Two-phase set
Node 2: [1,2],[] Value=[1,2,3,4] Node 1: [1],[] Node 3: [3,4],[]
Merge
Node 2: [1,2],[] Value=[1,2,3,4] Node 1: [1],[] Node 3: [3,4],[]
Merge G-Set for adds
Node 2: [1,2],[] Value=[1,2,4] Node 1: [1],[] Node 3: [3,4],[3]
Merge G-Set for removals
Elements cannot be re-added
Removes win
Node A Node B [ ] Add Remove [1] [
] [1]
Node A Node B [ ] [1] Add Remove [1]
[1] [ ] [1] [ ] [1]
Node A Node B [ ] [1] Add Remove [1]
[1] [ ] [1] [ ] [1]
Node A Node B [ ] [1] [1] Add Remove
[1] [1] [1] [ ] [1] [1] [1] [ ] [1]
OR-Set Observed-remove set
Node A Node B [ ] Add Remove [{A,1}] [
] [{A,1}]
Node A Node B [ ] [ ] Add Remove
[{A,1}] [{A,1}] [ ] [ ] [{A,1}] [{A,1}, ]
Node A Node B [ ] [ 1 ] Add
Remove [{A,1}] [{A,1}] [ ] [ ] [{A,1}] [{A,1},{A,2}]
Node A Node B [ ] [ 1 ] Add
Remove [{A,1}] [{A,1}] [ ] [ ] [{A,1}] [{A,1},{A,2}]
Node A Node B [ ] [ 1 ] Add
Remove [{A,1}] [{A,1}] [ ] [ ] [{A,1}] [{A,1},{A,2}] [ 1 ] [{A,1},{A,2}] [{A,1},{A,2}] [ 1 ]
Node A Node B [ ] [ 1 ] Add
Remove [{A,1}] [{A,1}] [ ] [ ] [{A,1}] [{A,1},{A,2}] [ 1 ] [{A,1},{A,2}] [{A,1},{A,2}] [ 1 ] [A] [A]
Add 1000 Remove 1000 Add Remove …
ORSWOT Observed-remove set without tombstones
None
None
Use Cases
None
None
None
None
• Load balancing / routing • Mobile clients synchronisation •
Temporary data on the servers • Avoiding work duplication • Collaborative editing
None
lasp-lang.readme.io
Summary
You're (almost) always designing a distributed system
Think about failures
Choose the correct tool for the job
References • https://medium.com/@istanbul_techie/a-look-at-conflict-free-replicated-data- types-crdt-221a5f629e7e • http://basho.com/posts/technical/distributed-data-types-riak-2-0/ • http://highscalability.com/blog/2014/10/13/how-league-of-legends-scaled- chat-to-70-million-players-it-t.html •
https://hal.inria.fr/inria-00609399v1/document • https://developers.soundcloud.com/blog/roshi-a-crdt-system-for- timestamped-events
Thanks!