Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CRDTs - The science behind Phoenix Presence
Search
Maciej Kaszubowski
May 25, 2017
Programming
2
290
CRDTs - The science behind Phoenix Presence
Maciej Kaszubowski
May 25, 2017
Tweet
Share
More Decks by Maciej Kaszubowski
See All by Maciej Kaszubowski
Error-free Elixir
mkaszubowski
0
420
Modular Design in Elixir (ElixirConf EU 2019)
mkaszubowski
2
880
The Big Ball of Nouns
mkaszubowski
0
120
Modular Design in Elixir
mkaszubowski
1
400
Our three years with Elixir
mkaszubowski
0
260
Concurrency Basics for Elixir
mkaszubowski
0
140
Distributed Elixir
mkaszubowski
0
180
Software Architecture
mkaszubowski
0
150
Let it crash - fault tolerance in Elixir/OTP
mkaszubowski
0
510
Other Decks in Programming
See All in Programming
2026年 エンジニアリング自己学習法
yumechi
0
120
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
650
GISエンジニアから見たLINKSデータ
nokonoko1203
0
200
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
0
830
Basic Architectures
denyspoltorak
0
650
OSSとなったswift-buildで Xcodeのビルドを差し替えられるため 自分でXcodeを直せる時代になっている ダイアモンド問題編
yimajo
3
600
メルカリのリーダビリティチームが取り組む、AI時代のスケーラブルな品質文化
cloverrose
2
510
コントリビューターによるDenoのすゝめ / Deno Recommendations by a Contributor
petamoriken
0
200
Python札幌 LT資料
t3tra
7
1.1k
Automatic Grammar Agreementと Markdown Extended Attributes について
kishikawakatsumi
0
180
AIフル活用時代だからこそ学んでおきたい働き方の心得
shinoyu
0
120
AIエージェントの設計で注意するべきポイント6選
har1101
7
3.4k
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
110
Game over? The fight for quality and originality in the time of robots
wayneb77
1
97
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
270
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
180
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.8k
Code Reviewing Like a Champion
maltzj
527
40k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Are puppies a ranking factor?
jonoalderson
1
2.7k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
150
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
Transcript
The Problem
None
Server Node 1 Server Node 2
Node A Node B [User] [User] [User] [] [] [User]
User connects User disconnects
There's no global time
Node A Node B [User] [User] [User] [] [] [User]
User connects User disconnects
Node A Node B [User] [User] [User] [] [] [User]
User connects User disconnects
Node A Node B
P.track(self, "users", "U1", %{})
P.track(self, "users", "U1", %{}) P.list("users") %{"U1" %{metas: [%{phx_ref: "…"}]}}
P.track(self, "users", "U1", %{}) P.list("users") P.track(self, "users", "U2", %{}) %{"U1"
%{metas: [%{phx_ref: "…"}]}}
P.track(self, "users", "U1", %{}) P.list("users") P.track(self, "users", "U2", %{}) P.list("users")
%{"U1" %{metas: [%{phx_ref: "…"}]}, "U2" %{metas: [%{phx_ref: "…"}]}} %{"U1" %{metas: [%{phx_ref: "…"}]}}
P.track(self, "users", "U1", %{}) P.list("users") P.track(self, "users", "U2", %{}) P.list("users")
%{"U1" %{metas: [%{phx_ref: "…"}]}, "U2" %{metas: [%{phx_ref: "…"}]}} P.track(self, "users", "U1", %{}) P.untrack(self, "users", "U1") %{"U1" %{metas: [%{phx_ref: "…"}]}}
P.track(self, "users", "U1", %{}) P.list("users") P.track(self, "users", "U2", %{}) P.list("users")
%{"U1" %{metas: [%{phx_ref: "…"}]}, "U2" %{metas: [%{phx_ref: "…"}]}} P.track(self, "users", "U1", %{}) P.untrack(self, "users", "U1") P.list("users") %{"U1" %{metas: [%{phx_ref: "…"}]}, "U2" %{metas: [%{phx_ref: "…"}]}} P.list("users") %{"U1" %{metas: [%{phx_ref: "…"}]}, "U2" %{metas: [%{phx_ref: "…"}]}} %{"U1" %{metas: [%{phx_ref: "…"}]}}
CRDTs The science behind Phoenix Presence Maciej Kaszubowski
Conflict-free Replicated Data Type
Alternatives
• Single source of truth (DB) • Consensus algorithm •
Resolving conflicts manually
Why CRDTs?
Eventually consistent Highly available Easy to use
Eventually consistent Highly available Easy to use Hard to create
:(
Features
1. Commutative 2. Associative 3. Idempotent x y = y
x (x y) z = x (y z) x x = x
Server Node 1 Server Node 2 Server Node 3
Client Client Client Client Client Client Client Client Client Server
Examples
Counters
Node A Node B +5 5 8 -2 3 +5
User connects User disconnects 0 0 5 3 8
Node A Node B +5 5 8 -2 8 +5
User connects User disconnects 0 0 5 3 13 10
G-Counter Grow-only counter
Node 2: 3 Value=8 Node 1: 5 Node 3: 1
Merge
Node 2: 3 Value=9 Node 1: 6 Node 3: 1
+1 Merge
PN-Counter Positive-Negative Counter
Node 2: P=2 N=2 Value=7 Node 1: P=5 N=2 Node
3: P=4 N=0 3 0 4 Merge
Node 2: P=2 N=2 Value=6 Node 1: P=5 N=3 Node
3: P=4 N=0 2 0 4 +1 Merge
Node 2: P=2 N=2 Value=8 Node 1: P=5 N=3 Node
3: P=6 N=0 2 0 6 +2 +1 Merge
Sets
Node A Node B [User] [User] [User] [] [] [User]
User connects User disconnects
G-Set Grow-only set
Node 2: [1,2] Value=[1,2,3,4] Node 1: [1] Node 3: [3,4]
Merge
Node 2: [1,2] Value=[1,2,3,4,5] Node 1: [1,5] Node 3: [3,4]
Merge
2P-Set Two-phase set
Node 2: [1,2],[] Value=[1,2,3,4] Node 1: [1],[] Node 3: [3,4],[]
Merge
Node 2: [1,2],[] Value=[1,2,3,4] Node 1: [1],[] Node 3: [3,4],[]
Merge G-Set for adds
Node 2: [1,2],[] Value=[1,2,4] Node 1: [1],[] Node 3: [3,4],[3]
Merge G-Set for removals
Elements cannot be re-added
Removes win
Node A Node B [ ] Add Remove [1] [
] [1]
Node A Node B [ ] [1] Add Remove [1]
[1] [ ] [1] [ ] [1]
Node A Node B [ ] [1] Add Remove [1]
[1] [ ] [1] [ ] [1]
Node A Node B [ ] [1] [1] Add Remove
[1] [1] [1] [ ] [1] [1] [1] [ ] [1]
OR-Set Observed-remove set
Node A Node B [ ] Add Remove [{A,1}] [
] [{A,1}]
Node A Node B [ ] [ ] Add Remove
[{A,1}] [{A,1}] [ ] [ ] [{A,1}] [{A,1}, ]
Node A Node B [ ] [ 1 ] Add
Remove [{A,1}] [{A,1}] [ ] [ ] [{A,1}] [{A,1},{A,2}]
Node A Node B [ ] [ 1 ] Add
Remove [{A,1}] [{A,1}] [ ] [ ] [{A,1}] [{A,1},{A,2}]
Node A Node B [ ] [ 1 ] Add
Remove [{A,1}] [{A,1}] [ ] [ ] [{A,1}] [{A,1},{A,2}] [ 1 ] [{A,1},{A,2}] [{A,1},{A,2}] [ 1 ]
Node A Node B [ ] [ 1 ] Add
Remove [{A,1}] [{A,1}] [ ] [ ] [{A,1}] [{A,1},{A,2}] [ 1 ] [{A,1},{A,2}] [{A,1},{A,2}] [ 1 ] [A] [A]
Add 1000 Remove 1000 Add Remove …
ORSWOT Observed-remove set without tombstones
None
None
Use Cases
None
None
None
None
• Load balancing / routing • Mobile clients synchronisation •
Temporary data on the servers • Avoiding work duplication • Collaborative editing
None
lasp-lang.readme.io
Summary
You're (almost) always designing a distributed system
Think about failures
Choose the correct tool for the job
References • https://medium.com/@istanbul_techie/a-look-at-conflict-free-replicated-data- types-crdt-221a5f629e7e • http://basho.com/posts/technical/distributed-data-types-riak-2-0/ • http://highscalability.com/blog/2014/10/13/how-league-of-legends-scaled- chat-to-70-million-players-it-t.html •
https://hal.inria.fr/inria-00609399v1/document • https://developers.soundcloud.com/blog/roshi-a-crdt-system-for- timestamped-events
Thanks!