Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Distributed Elixir
Search
Maciej Kaszubowski
July 07, 2018
Programming
0
160
Distributed Elixir
Presentation about some of the tools for distributed programming in Elixir
Maciej Kaszubowski
July 07, 2018
Tweet
Share
More Decks by Maciej Kaszubowski
See All by Maciej Kaszubowski
Error-free Elixir
mkaszubowski
0
360
Modular Design in Elixir (ElixirConf EU 2019)
mkaszubowski
2
750
The Big Ball of Nouns
mkaszubowski
0
110
Modular Design in Elixir
mkaszubowski
1
390
Our three years with Elixir
mkaszubowski
0
250
Concurrency Basics for Elixir
mkaszubowski
0
120
Software Architecture
mkaszubowski
0
140
Let it crash - fault tolerance in Elixir/OTP
mkaszubowski
0
480
CRDTs - The science behind Phoenix Presence
mkaszubowski
2
270
Other Decks in Programming
See All in Programming
Signals & Resource API in Angular: 3 Effective Rules for Your Architecture @BASTA 2025 in Mainz
manfredsteyer
PRO
0
110
なぜあの開発者はDevRelに伴走し続けるのか / Why Does That Developer Keep Running Alongside DevRel?
nrslib
3
380
プログラミングどうやる? ~テスト駆動開発から学ぶ達人の型~
a_okui
0
190
2分台で1500examples完走!爆速CIを支える環境構築術 - Kaigi on Rails 2025
falcon8823
3
3.4k
CI_CD「健康診断」のススメ。現場でのボトルネック特定から、健康診断を通じた組織的な改善手法
teamlab
PRO
0
190
Goで実践するドメイン駆動開発 AIと歩み始めた新規プロダクト開発の現在地
imkaoru
4
740
エンジニアとして高みを目指す、 利益を生み出す設計の考え方 / design-for-profit
minodriven
23
12k
GitHub Actions × AWS OIDC連携の仕組みと経緯を理解する
ota1022
0
240
GraphQL×Railsアプリのデータベース負荷分散 - 月間3,000万人利用サービスを無停止で
koxya
1
1.2k
ネイティブ製ガントチャートUIを作って学ぶUICollectionViewLayoutの威力
jrsaruo
0
140
AI Coding Meetup #3 - 導入セッション / ai-coding-meetup-3
izumin5210
0
630
CSC305 Lecture 01
javiergs
PRO
1
400
Featured
See All Featured
The Cult of Friendly URLs
andyhume
79
6.6k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
9
580
Scaling GitHub
holman
463
140k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
54
3k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Practical Orchestrator
shlominoach
190
11k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
How to Ace a Technical Interview
jacobian
280
24k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
189
55k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
890
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
Transcript
It’s scary out there
Organisational Matters
None
We’re 1 year old!
Summer break (probably)
We’re looking for speakers!
It’s scary out there Distributed Systems in Elixir Poznań Elixir
Meetup #8
None
Pid 1 Pid 2
Pid 1 Pid 2 Node A Node B
The basics
iex --name
[email protected]
--cookie cookie -S mix
Node.connect(:’
[email protected]
')
(DEMO)
#PID<0.94.0>
#PID<0.94.0> node identifier (relative to current node)
#PID<0.94.0> node identifier (relative to current node) 0 =a local
process
#PID<0.94.0> Process id node identifier (relative to current node)
How does it work?
Pid 1 Node A Pid 2 Node B
Pid 1 Node A Pid 2 Node B TCP Connection
send(pid2, msg) Pid 1 Node A Pid 2 Node B
TCP Connection
send(pid2, msg) Pid 1 Node A Pid 2 Node B
destination_node = node(pid) TCP Connection
send(pid2, msg) Pid 1 Node A Pid 2 Node B
destination_node = node(pid) :erlang.term_to_binary(msg) TCP Connection
send(pid2, msg) Pid 1 Node A Pid 2 Node B
destination_node = node(pid) :erlang.term_to_binary(msg) TCP Connection
send(pid2, msg) Pid 1 Node A Pid 2 Node B
destination_node = node(pid) :erlang.term_to_binary(msg) TCP Connection :erlang.binary_to_term(encode)
send(pid2, msg) Pid 1 Node A receive msg Pid 2
Node B destination_node = node(pid) :erlang.term_to_binary(msg) TCP Connection :erlang.binary_to_term(encode)
Distributed Systems?
Distributed Systems? Solved!
Well, not exactly…
Difficulties
Node A Node B
Node A Node B Node C
Node A Node B Node C Node D
None
A lot of messages
us-east-1 us-west-2
8 fallacies of distributed computing
fallacies of distributed computing 1. The network is reliable 2.
Latency is zero 3. Bandwidth is infinite 4. The network is secure 5. Topology doesn’t change 6. The is one administrator 7. Transport cost is zero 8. The network is homogenous
CAP THEOREM
CAP THEOREM us-west-2 us-east-1
CAP THEOREM us-west-2 us-east-1 Set X=5
CAP THEOREM us-west-2 us-east-1 Set X=5 Read X
CAP THEOREM us-west-2 us-east-1 Set X=5 Set X = 7
Consistency or Availability (under network partition)
Consistency or Speed In practice
Guarantees
Pid 1 Pid 2 Pid3 Guarantees m1, m2, m3 m4,
m5, m6 send(pid2, m1) send(pid2, m2) send(pid2, m3) send(pid2, m4) send(pid2, m5) send(pid2, m6)
Pid 1 Pid 2 Pid3 Guarantees m1, m2, m3 m4,
m5, m6 send(pid2, m1) send(pid2, m2) send(pid2, m3) send(pid2, m4) send(pid2, m5) send(pid2, m6) Ordering between two processes is preserved
Pid 1 Pid 2 Pid3 Guarantees m4, m5, m6 send(pid2,
m1) send(pid2, m2) send(pid2, m3) send(pid2, m4) send(pid2, m5) send(pid2, m6) m1, m2, m3 Delivery is not guaranteed
Pid 1 Pid 2 Pid3 Guarantees m1, m2, m3 m4,
m5, m6 send(pid2, m1) send(pid2, m2) send(pid2, m3) send(pid2, m4) send(pid2, m5) send(pid2, m6) Ordering between different processes is not guaranteed
[m1, m2, m3, m4, m5, m6]
[m1, m2, m3, m4, m5, m6] [m4, m5, m6, m1,
m2, m3]
[m1, m2, m3, m4, m5, m6] [m4, m5, m6, m1,
m2, m3] [m1, m4, m2, m5, m3, m6]
[m1, m2, m3, m4, m5, m6] [m4, m5, m6, m1,
m2, m3] [m1, m4, m2, m5, m3, m6] [m1, m2, m3]
[m1, m2, m3, m4, m5, m6] [m4, m5, m6, m1,
m2, m3] [m1, m4, m2, m5, m3, m6] [m1, m2, m3] [m1, m3, m5, m6]
[m1, m2, m3, m4, m5, m6] [m4, m5, m6, m1,
m2, m3] [m1, m4, m2, m5, m3, m6] [m1, m2, m3] [m1, m3, m5, m6] []
[m1, m2, m3, m4, m5, m6] [m4, m5, m6, m1,
m2, m3] [m1, m4, m2, m5, m3, m6] [m1, m2, m3] [m1, m3, m5, m6] [] [m1, m3, m2, m4, m5, m6]
[m1, m2, m3, m4, m5, m6] [m4, m5, m6, m1,
m2, m3] [m1, m4, m2, m5, m3, m6] [m1, m2, m3] [m1, m3, m5, m6] [] [m1, m3, m2, m4, m5, m6] [M3, M3]
Phoenix Request A User Logged In
Phoenix Request A Phoenix Request B User Logged In User
Logged OUT
Phoenix Request A Phoenix Request B User Logged In User
Logged OUT This Can arrive first
Unfortunately, things tend to work fine locally
The Tools
:global
Pid 1 Node A Node B Pid 2
Pid 1 Node A Node B Pid 2 :global.register_name(“global”, self())
Pid 1 Node A Node B Pid 2 :global.register_name(“global”, self())
Register PId1 as “global”
Pid 1 Node A Node B Pid 2 :global.register_name(“global”, self())
Register PId1 as “global” Sure
Pid 1 Node A Node B Pid 2 :global.register_name(“global”, self())
Register PId1 as “global” Sure :global.whereis_name(“global”) = pid1
Pid 1 Node A Node B Pid 2 :global.register_name(“global”, self())
:global.register_name(“global”, self()) ?
(DEMO)
:global • single process registration (if everything works OK) •
Favours availability over consistency • Information stored locally (reading is fast) • Registration is blocking (may be slow)
:PG2
Pid1 Pid3 Pid2 [] [] []
Pid1 Pid3 Pid2 :pg2.create(“my_group”) [] [] []
Pid1 Pid3 Pid2 [] [] [] join join :pg2.join(“my_group”, self()
Pid1 Pid3 Pid2 [] [pid1] [] Monitor Monitor :pg2.join(“my_group”, self()
Pid1 Pid3 Pid2 [pid1] [pid1] [pid1] Monitor Monitor :pg2.join(“my_group”, self()
Pid1 Pid3 Pid2 [pid1] [pid1] [pid1]
Pid1 Pid3 Pid2 :pg2.join(“my_group”, self() [pid1] [pid1, pid2] [pid1]
Pid1 Pid3 Pid2 join :pg2.join(“my_group”, self() join [pid1, pid2] [pid1,
pid2] [pid1, pid2]
Pid1 Pid3 Pid2 [pid1] [pid2] [pid1]
Pid1 Pid3 Pid2 [pid1] [pid2] [pid1]
Pid1 Pid3 Pid2 [pid1] [pid2] [pid1]
Pid1 Pid3 Pid2 [pid1, pid2] [pid1, pid2] [pid1, pid2]
It will heal, but the state in inconsistent for some
time
What does it matter?
Node A Pg2 Pg2 Pg2 Node B Node C
Node A Pg2 Pg2 Pg2 Node B Node C Phoenix
Channels
Node A Pg2 Pg2 Pg2 Node B Node C Phoenix
Presence
Node A Pg2 Pg2 Pg2 Node B Node C Phoenix
Channels
:pg2 • Process groups • Favours availability over consistency •
Information stored locally (reading is fast) • Registration is blocking (may be slow)
Strongly consistent Solutions
Strongly consistent Solutions • Consensus - Raft, Paxos, ZAB •
Two-phase commit/THree-phase commit (2PC/3PC) • Read/Write quorums • Single database as a source of truth
Summary
Distributed Systems
Well, not exactly…
Asynchronous messages Distributed systems are all about
Really, there’s no magic
Just asynchronous messages between nodes
Just asynchronous messages between nodes & node failures
Just asynchronous messages between nodes & node failures & Communication
failures
Just asynchronous messages between nodes & node failures & Communication
failures & Network partitions
Tradeoffs Distributed systems are all about
Where to go next
Worth looking at • Riak_core • RAFT • Two-Phase Commit
(2PC) / Three-Phase Commit (3PC) • CRDTs • LASP and Partisan
Free online (click!) Elixir / Erlang
Free PDF (Click!) Distributed Systems
Theory (The hard stuff)
• https://raft.github.io/ (Raft Consensus) • http://learnyousomeerlang.com/distribunomicon • https://www.rgoarchitects.com/Files/fallacies.pdf (Fallacies of
distributed computing) • https://dzone.com/articles/better-explaining-cap-theorem (CAP Theorem) • https://medium.com/learn-elixir/message-order-and-delivery-guarantees-in-elixir- erlang-9350a3ea7541 (Elixir message delivery guarantees) • https://lasp-lang.readme.io/ (LASP) • https://arxiv.org/pdf/1802.02652.pdf (Partisan Paper) • https://bravenewgeek.com/tag/three-phase-commit/ (3PC)
We’re looking for speakers!
Thank You! Poznań Elixir Meetup #8