Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Concurrency Basics for Elixir
Search
Maciej Kaszubowski
August 02, 2018
Programming
0
120
Concurrency Basics for Elixir
Slides from internal presentation at
https://appunite.com
Maciej Kaszubowski
August 02, 2018
Tweet
Share
More Decks by Maciej Kaszubowski
See All by Maciej Kaszubowski
Error-free Elixir
mkaszubowski
0
340
Modular Design in Elixir (ElixirConf EU 2019)
mkaszubowski
2
740
The Big Ball of Nouns
mkaszubowski
0
110
Modular Design in Elixir
mkaszubowski
1
390
Our three years with Elixir
mkaszubowski
0
250
Distributed Elixir
mkaszubowski
0
160
Software Architecture
mkaszubowski
0
140
Let it crash - fault tolerance in Elixir/OTP
mkaszubowski
0
480
CRDTs - The science behind Phoenix Presence
mkaszubowski
2
270
Other Decks in Programming
See All in Programming
プロポーザル駆動学習 / Proposal-Driven Learning
mackey0225
2
1.3k
Tool Catalog Agent for Bedrock AgentCore Gateway
licux
6
2.5k
複雑なフォームに立ち向かう Next.js の技術選定
macchiitaka
2
130
個人軟體時代
ethanhuang13
0
320
意外と簡単!?フロントエンドでパスキー認証を実現する WebAuthn
teamlab
PRO
2
760
Ruby Parser progress report 2025
yui_knk
1
440
HTMLの品質ってなんだっけ? “HTMLクライテリア”の設計と実践
unachang113
4
2.9k
デザイナーが Androidエンジニアに 挑戦してみた
874wokiite
0
470
2025 年のコーディングエージェントの現在地とエンジニアの仕事の変化について
azukiazusa1
24
12k
Oracle Database Technology Night 92 Database Connection control FAN-AC
oracle4engineer
PRO
1
450
パッケージ設計の黒魔術/Kyoto.go#63
lufia
3
440
The Past, Present, and Future of Enterprise Java with ASF in the Middle
ivargrimstad
0
120
Featured
See All Featured
Scaling GitHub
holman
463
140k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Code Reviewing Like a Champion
maltzj
525
40k
Site-Speed That Sticks
csswizardry
10
820
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Transcript
Concurrency basics For Elixir-based Systems
None
So, what’s concurrency?
Sequential Execution (3 functions, 1 thread)
Sequential Execution (3 functions, 1 thread) Concurrent Execution (3 functions,
3 threads)
Sequential Execution (3 functions, 1 thread) Concurrent Execution (3 functions,
3 threads) Preemptive scheduling
Where’s the benefit?
Req1 Req2 Req3 Resp Sequential Execution time Waiting time
Req1 Req2 Req3 Resp Req1 Resp Req2 Req3 Sequential Concurrent
Execution time Waiting time
CPU bound Re Re Re Res Re Res Re Re
I/O bound
Concurrent or Parallel What’s the difference?
Concurrent Execution (3 functions, 3 threads)
Concurrent Execution (3 functions, 3 threads) Parallel Execution (3 functions,
3 threads, 2 cores) core 1 core 2
root@kingschat-api-c8f8d6b76-4j65j:/app# nproc 12 root@tahmeel-api-prod-b5979bdc6-q5wz6:/# nproc 1 How many cores?
Concurrent Execution (3 functions, 3 threads) Parallel Execution (3 functions,
3 threads, 2 cores) core 1 core 2 (by default) One erlang scheduler per core
:observer_cli.start()
None
Req1 Req2 Req3 Resp Req1 Resp Req2 Req3 Sequential Concurrent
Execution time Waiting time Req1 Resp Req2 Req3 Parallel
Sequential execution
Phoenix Request Req 1
Phoenix Request Resp
Phoenix Request Req 2
Phoenix Request Resp
Phoenix Request Req 3
Phoenix Request Resp
Concurrent execution
Phoenix Request
Phoenix Request Task 1 Task 2 Task 3
Phoenix Request Task 1 Task 2 Task 3 Req 1
Req 2 Req 3
Phoenix Request Task 1 Task 2 Task 3 Resp Resp
Resp
Phoenix Request Task 1 Task 2 Task 3
R1 APP Server DB Server (3 cores) R2 R1 R2
Time Execution time Waiting time
R1 APP Server DB Server (3 cores) Send resp R2
R3 R1 R2 R3 Time Execution time Waiting time
How much can we gain?
Amdahl’s Law
Amdahl’s Law
Amdahl’s Law in a nutshell The more synchronisation, the less
benefit from multiple cores
R1 APP Server Send resp R2 R3 R1 R2 R3
Time Execution time Waiting time Almost 100% parallel (almost no synchronisation) DB Server (3 cores)
But…
R1 APP Server Send resp R2 R3 R1 R2 R3
Time Execution time Waiting time This is not constant DB Server (3 cores)
R1 APP Server Send resp R2 R3 R1 R2 R3
Time Execution time Waiting time This is not infinite DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 Time
Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 Time
Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 R4
Time Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 R4
Time Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 R4
Time Execution time Waiting time DB Server (3 cores)
R1 APP Server Send resp R2 R3 R1 R2 R3
R4 R4 Time Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 R4
Time Execution time Waiting time R5 R6 R7 R5 R6 R7 DB Server (3 cores)
Phoenix Request Task 1 Task 2 Task 3 Req 1
Req 2 Req 3 Remember this?
This isn’t exactly true
None
Connection pool (Prevents from overworking the DB)
Pool Manager (Blocks until a free worker is available)
None
Pool Manager (Blocks until a free worker is available)
None
It gets worse
Pool Manager Mailbox Has to be synchronised
Pool Manager Message Passing Is just copying data in shared
memory
Pool Manager Remember semaphores?
Logger Metrics Sentry
Network stack
Network stack
Network stack
Network stack Sentry Metrics
OS Threads (Garbage Collection) Data Bus Virtual Machines Memory characteristics
(e.g. processor caches) … Other synchronisation points
That’s hard
That’s REALLY hard
That’s REALLY hard Seriously, people spend their entire careers on
this
So, what to do?
Measure
Measure Measure
Measure Measure Measure
Measure ON PRODUCTION
Measure ON PRODUCTION You WILL get false results on staging/locally
Measure Entire system You WILL get false results for single
functions
Measure ONLY IF YOU HAVE TRAFFIC
“premature optimization is the root of all evil”
If something takes X ms, it will always take X
ms.
Async execution cannot “remove” this time It can only hide
it
BACK PRESSURE
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer Stop
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer OK, give me more
Producent Consumer Consumer
None
Back pressure
Thanks!