Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Concurrency Basics for Elixir
Search
Maciej Kaszubowski
August 02, 2018
Programming
0
110
Concurrency Basics for Elixir
Slides from internal presentation at
https://appunite.com
Maciej Kaszubowski
August 02, 2018
Tweet
Share
More Decks by Maciej Kaszubowski
See All by Maciej Kaszubowski
Error-free Elixir
mkaszubowski
0
320
Modular Design in Elixir (ElixirConf EU 2019)
mkaszubowski
2
720
The Big Ball of Nouns
mkaszubowski
0
94
Modular Design in Elixir
mkaszubowski
1
380
Our three years with Elixir
mkaszubowski
0
230
Distributed Elixir
mkaszubowski
0
140
Software Architecture
mkaszubowski
0
130
Let it crash - fault tolerance in Elixir/OTP
mkaszubowski
0
450
CRDTs - The science behind Phoenix Presence
mkaszubowski
2
260
Other Decks in Programming
See All in Programming
UPDATEがシステムを複雑にする? イミュータブルデータモデルのすすめ
shimomura
0
400
DevDay2025-OracleDatabase-kernel-addressing-history
oracle4engineer
PRO
7
1.7k
Javaに鉄道指向プログラミング (Railway Oriented Pro gramming) のエッセンスを取り入れる/Bringing the Essence of Railway-Oriented Programming to Java
cocet33000
1
420
Perlで痩せる
yuukis
1
670
Javaのルールをねじ曲げろ!禁断の操作とその代償から学ぶメタプログラミング入門 / A Guide to Metaprogramming: Lessons from Forbidden Techniques and Their Price
nrslib
2
1.7k
ワイがおすすめする新潟の食 / 20250530phpconf-niigata-eve
kasacchiful
0
290
List Unfolding - 'unfold' as the Computational Dual of 'fold', and how 'unfold' relates to 'iterate'"
philipschwarz
PRO
0
160
複雑なフォームを継続的に開発していくための技術選定・設計・実装 #tskaigi / #tskaigi2025
izumin5210
12
6.6k
RubyKaigi Hack Space in Tokyo & 函館最速 "予習" 会 / RubyKaigi Hack Space in Tokyo & The Fastest Briefing of RubyKaigi 2026 in Hakodate
moznion
1
130
型付け力を強化するための Hoogle のすゝめ / Boosting Your Type Mastery with Hoogle
guvalif
1
240
型安全RESTで爆速プロトタイピング – Hono RPC実践
tacke_jp
0
100
TypeScript を活かしてデザインシステム MCP を作る / #tskaigi_after_night
izumin5210
4
500
Featured
See All Featured
Typedesign – Prime Four
hannesfritz
42
2.6k
Designing for humans not robots
tammielis
253
25k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
52
2.8k
Producing Creativity
orderedlist
PRO
346
40k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.6k
The Power of CSS Pseudo Elements
geoffreycrofte
76
5.8k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
How to train your dragon (web standard)
notwaldorf
92
6.1k
How to Think Like a Performance Engineer
csswizardry
24
1.6k
What's in a price? How to price your products and services
michaelherold
245
12k
Rails Girls Zürich Keynote
gr2m
94
13k
Transcript
Concurrency basics For Elixir-based Systems
None
So, what’s concurrency?
Sequential Execution (3 functions, 1 thread)
Sequential Execution (3 functions, 1 thread) Concurrent Execution (3 functions,
3 threads)
Sequential Execution (3 functions, 1 thread) Concurrent Execution (3 functions,
3 threads) Preemptive scheduling
Where’s the benefit?
Req1 Req2 Req3 Resp Sequential Execution time Waiting time
Req1 Req2 Req3 Resp Req1 Resp Req2 Req3 Sequential Concurrent
Execution time Waiting time
CPU bound Re Re Re Res Re Res Re Re
I/O bound
Concurrent or Parallel What’s the difference?
Concurrent Execution (3 functions, 3 threads)
Concurrent Execution (3 functions, 3 threads) Parallel Execution (3 functions,
3 threads, 2 cores) core 1 core 2
root@kingschat-api-c8f8d6b76-4j65j:/app# nproc 12 root@tahmeel-api-prod-b5979bdc6-q5wz6:/# nproc 1 How many cores?
Concurrent Execution (3 functions, 3 threads) Parallel Execution (3 functions,
3 threads, 2 cores) core 1 core 2 (by default) One erlang scheduler per core
:observer_cli.start()
None
Req1 Req2 Req3 Resp Req1 Resp Req2 Req3 Sequential Concurrent
Execution time Waiting time Req1 Resp Req2 Req3 Parallel
Sequential execution
Phoenix Request Req 1
Phoenix Request Resp
Phoenix Request Req 2
Phoenix Request Resp
Phoenix Request Req 3
Phoenix Request Resp
Concurrent execution
Phoenix Request
Phoenix Request Task 1 Task 2 Task 3
Phoenix Request Task 1 Task 2 Task 3 Req 1
Req 2 Req 3
Phoenix Request Task 1 Task 2 Task 3 Resp Resp
Resp
Phoenix Request Task 1 Task 2 Task 3
R1 APP Server DB Server (3 cores) R2 R1 R2
Time Execution time Waiting time
R1 APP Server DB Server (3 cores) Send resp R2
R3 R1 R2 R3 Time Execution time Waiting time
How much can we gain?
Amdahl’s Law
Amdahl’s Law
Amdahl’s Law in a nutshell The more synchronisation, the less
benefit from multiple cores
R1 APP Server Send resp R2 R3 R1 R2 R3
Time Execution time Waiting time Almost 100% parallel (almost no synchronisation) DB Server (3 cores)
But…
R1 APP Server Send resp R2 R3 R1 R2 R3
Time Execution time Waiting time This is not constant DB Server (3 cores)
R1 APP Server Send resp R2 R3 R1 R2 R3
Time Execution time Waiting time This is not infinite DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 Time
Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 Time
Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 R4
Time Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 R4
Time Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 R4
Time Execution time Waiting time DB Server (3 cores)
R1 APP Server Send resp R2 R3 R1 R2 R3
R4 R4 Time Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 R4
Time Execution time Waiting time R5 R6 R7 R5 R6 R7 DB Server (3 cores)
Phoenix Request Task 1 Task 2 Task 3 Req 1
Req 2 Req 3 Remember this?
This isn’t exactly true
None
Connection pool (Prevents from overworking the DB)
Pool Manager (Blocks until a free worker is available)
None
Pool Manager (Blocks until a free worker is available)
None
It gets worse
Pool Manager Mailbox Has to be synchronised
Pool Manager Message Passing Is just copying data in shared
memory
Pool Manager Remember semaphores?
Logger Metrics Sentry
Network stack
Network stack
Network stack
Network stack Sentry Metrics
OS Threads (Garbage Collection) Data Bus Virtual Machines Memory characteristics
(e.g. processor caches) … Other synchronisation points
That’s hard
That’s REALLY hard
That’s REALLY hard Seriously, people spend their entire careers on
this
So, what to do?
Measure
Measure Measure
Measure Measure Measure
Measure ON PRODUCTION
Measure ON PRODUCTION You WILL get false results on staging/locally
Measure Entire system You WILL get false results for single
functions
Measure ONLY IF YOU HAVE TRAFFIC
“premature optimization is the root of all evil”
If something takes X ms, it will always take X
ms.
Async execution cannot “remove” this time It can only hide
it
BACK PRESSURE
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer Stop
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer OK, give me more
Producent Consumer Consumer
None
Back pressure
Thanks!