Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ABEJA Innovation Meetup NIPS PointNet++
Search
望月紅葉さんと幸せな家庭を築きたい
January 01, 2018
Programming
1
500
ABEJA Innovation Meetup NIPS PointNet++
望月紅葉さんと幸せな家庭を築きたい
January 01, 2018
Tweet
Share
More Decks by 望月紅葉さんと幸せな家庭を築きたい
See All by 望月紅葉さんと幸せな家庭を築きたい
shadow-detection-with-conditional-generative-adversarial-networks
momijifullmoon
0
150
unsupervised-learning-of-depth-and-ego-motion-from-monocular-video-using-3d-geometric-constraints
momijifullmoon
0
470
NIPS2017reading_3Dreconstruction
momijifullmoon
0
1.5k
Other Decks in Programming
See All in Programming
メルカリのリーダビリティチームが取り組む、AI時代のスケーラブルな品質文化
cloverrose
2
450
Python札幌 LT資料
t3tra
7
1.1k
Deno Tunnel を使ってみた話
kamekyame
0
310
Spinner 軸ズレ現象を調べたらレンダリング深淵に飲まれた #レバテックMeetup
bengo4com
1
210
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
240
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
240
MDN Web Docs に日本語翻訳でコントリビュート
ohmori_yusuke
0
280
ゆくKotlin くるRust
exoego
1
190
AIエージェントの設計で注意するべきポイント6選
har1101
6
2.9k
JETLS.jl ─ A New Language Server for Julia
abap34
2
470
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
15
4k
はじめてのカスタムエージェント【GitHub Copilot Agent Mode編】
satoshi256kbyte
0
140
Featured
See All Featured
How to Talk to Developers About Accessibility
jct
1
94
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
120
Embracing the Ebb and Flow
colly
88
4.9k
Context Engineering - Making Every Token Count
addyosmani
9
590
WCS-LA-2024
lcolladotor
0
400
Unsuck your backbone
ammeep
671
58k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
34
4 Signs Your Business is Dying
shpigford
187
22k
Are puppies a ranking factor?
jonoalderson
0
2.6k
The SEO identity crisis: Don't let AI make you average
varn
0
46
Being A Developer After 40
akosma
91
590k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
Transcript
PointNet++: Deep Hierarchical Feature Learning on Point Sets
in a Metric Space NIPSಡΈձˏABEJA 1
PointNet++ͷ֓ཁ ▸ ஶऀ: Charles R. Qi, Li Yi, Hao Su,
Leonidas J. Guibas ɹɹ ˏελϯϑΥʔυ ▸ ֓ཁ ▸ ܈Λͦͷ··ೖྗ͠ɺͦͷΫϥεྨɺ SegmentationΛߦ͏PointNetͷվྑใࠂ ▸ PointNetͷऑͰ͋ͬͨ܈ີґଘΛࠀɺ ͓Αͼ֊తͳֶशΛͰ͖ΔΑ͏ʹ ʮSampling Layerʯͱ ʮGrouped LayerʯΛఏҊ 2
എܠ ▸ ̏࣍ݩͷधཁ 3 ࣗಈӡస AR ઃܭ
ͷྲྀΕ ▸ എܠ ▸ PointNetʹ͍ͭͯ ▸ ख๏ ▸ ࣮ݧ ▸
·ͱΊ 4
എܠ ▸ ̏࣍ݩͷσʔλ 5 ɹɹ܈ɹɹ ɹɹϝογϡɹɹ Voxel Өɹ RGB-D
എܠ ▸ طଘͷख๏ ▸ ܈Λผͷදݱʹม͍ͯͨ͠ 6 Unstructured, Unordered ͳ܈Λͦͷ··ೖྗ Ͱ͏·͍͘͘Α͏ͳख๏
==> PointNetΛఏҊ@CVPR2017
PointNetͷ͓͞Β͍ ▸ ղ͘λεΫ 7 Classification Segmentation Scene Parsing ೖྗ
PointNetͷ͓͞Β͍ ▸ ઃܭ 8
PointNetͷ͓͞Β͍ ▸ ՝ 9 PointNet֤ʹ͓͍ͯɺlocalͷใ͕ফ͑Δ ֊తಛֶशͰ͖ͳ͍ ෳ֊ͷநԽͰ͖ͳ͍ GlobalͷಛֶशͷΈ ͋Δ͘͠શͯͷ
PointNetͷ͓͞Β͍ ▸ localͷใ͕ফ͑Δͱ 10 globalͷใɺઈର࠲ඪʹґଘͯ͠͠·͏ͷͰɺ segmentationͰະͷͷʹରԠͰ͖ͳ͍
PointNet++Ͱ ▸ ֊తֶश ▸ localͳใΛ͢ 11 ▸ ܈ີʹϩόετʹ
ΞʔΩςΫνϟ 12
֊తͳֶश 13
֊తͳֶश ▸ Sampling layer ▸ Farthest Point Sampling (FPS) 14
https://www.groundai.com/project/parametric-manifold-learning-via-sparse-multidimensional-scaling/
▸ Grouping layer ▸ radius based ball query ֊తͳֶश 15
PointNet layer Convolution layer Input Δԋࢉ ԋࢉͰݟΔ ൣғ Radius ball query ɹ܈ɹ PointNetʢॱ൪ීวʣ ߦྻʢݻఆͷϐΫηϧʣ ΈࠐΈʢॱ൪ґଘʣ ɹີͳߦྻɹ
֊తͳֶश ▸ PointNet layer 16 N1ݸͷʹର͠ C1ݸͷಛ࡞ ॏΈshare
֊తͳֶश ▸ PointNet layer 17 x1,y1,z1,ΫΤϦ1,ಛ1 x2,y2,z2,ΫΤϦ2,ಛ2 x3,y3,z3,ΫΤϦ3,ಛ3 xN1,yN1,zN1,ΫΤϦN1ಛN1 MLP
MLP MLP MLP x1,y1,z1,ಛ1 x2,y2,z2,ಛ2 x3,y3,z3,ಛ3 xN1,yN1,zN1,ಛN1 ॏΈShare
ີґଘࠀख๏ ▸ ̏࣍ݩͷଌఆͰ܈ີ͕Ұൠతͳ՝ 18 ==> ܈ີʹϩόετʹ͍ͨ͠
ີґଘࠀख๏ ▸ SamplingͱGroupingΛෳ༻ҙ 19 MRGͷํ͕࣍ͰपลͱͷಛΛर͑Δ
Classification ࣮ݧ 20
▸ ModelNet40ʹରͯ͠ Classification ࣮ݧ 21 PointNetʹൺɺPointNet++ྨਫ਼্ CNNϕʔεͷख๏ʹউར
ີґଘ࣮ݧ 22 ಛʹ܈͕গͳ͍ͱɺMRG͕༗ޮ
Segmentation ࣮ݧ 23 ૠɿɹIDW (ٯڑՃॏ) Unitpointnet: ֤ͰMLP
Segmentation ࣮ݧ ▸ ݁Ռ 24 MSGΛೖΕΔ͜ͱͰɺෆۉҰͳ܈Ͱ͏·͍͘͘
Segmentation ࣮ݧ ▸ ݁Ռ 25 PointNetΑΓՈ۩ͷsegmentation্͕ख͍͘͘
ඇϢʔΫϦου ڑۭؒͰͷ࣮ݧ 26 WKS , HKS, multi-scale Gaussian curvature
Feature Visualization ▸ ࠷ॳͷͷॏΈΛՄࢹԽ 27 ฏ໘ɺίʔφʔͱ͔Λֶश
·ͱΊ ▸ PointNetΛ֦ுͨ͠ख๏PointNet++Λൃද ▸ CVPR2017=>NIPS2017ʹ̍ຊ௨͍ͯ͠Δɻɻɻ ▸ Sampling layerɺGrouped layerΛऔΓೖΕ֊తͳֶश ▸
MRGɺMSGΛఏҊ͠ɺ܈ີʹґଘ͠ͳֶ͍श ▸ ̏࣍ݩ܈ͷσʔληοτʹରͯ͠ɺSoTAୡ ▸ ݱʹߦͬͨײ ▸ ஶऀͱ͢͜ͱͰࡉ͔ͳใΛर͑Δ 28