Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NIPS2017reading_3Dreconstruction
Search
望月紅葉さんと幸せな家庭を築きたい
January 27, 2018
Research
0
1.5k
NIPS2017reading_3Dreconstruction
望月紅葉さんと幸せな家庭を築きたい
January 27, 2018
Tweet
Share
More Decks by 望月紅葉さんと幸せな家庭を築きたい
See All by 望月紅葉さんと幸せな家庭を築きたい
shadow-detection-with-conditional-generative-adversarial-networks
momijifullmoon
0
150
unsupervised-learning-of-depth-and-ego-motion-from-monocular-video-using-3d-geometric-constraints
momijifullmoon
0
450
ABEJA Innovation Meetup NIPS PointNet++
momijifullmoon
1
490
Other Decks in Research
See All in Research
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
170
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
140
電通総研の生成AI・エージェントの取り組みエンジニアリング業務向けAI活用事例紹介
isidaitc
1
1.1k
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
330
A scalable, annual aboveground biomass product for monitoring carbon impacts of ecosystem restoration projects
satai
4
370
20250725-bet-ai-day
cipepser
2
490
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
630
Integrating Static Optimization and Dynamic Nature in JavaScript (GPCE 2025)
tadd
0
100
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
490
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1k
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
8
1.9k
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
730
Featured
See All Featured
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Gamification - CAS2011
davidbonilla
81
5.5k
Automating Front-end Workflow
addyosmani
1371
200k
A designer walks into a library…
pauljervisheath
209
24k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Git: the NoSQL Database
bkeepers
PRO
431
66k
Building Adaptive Systems
keathley
44
2.8k
BBQ
matthewcrist
89
9.8k
4 Signs Your Business is Dying
shpigford
185
22k
Unsuck your backbone
ammeep
671
58k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
Become a Pro
speakerdeck
PRO
29
5.6k
Transcript
̏࣍ݩ෮ݩʹؔͯ͠ Learning a Multi-View Stereo Machine NIPS2017จಡΈձˏΫοΫύου 1 ಛʹදه͕ͳ͍ݶΓɺҎԼͷࢿྉ͔ΒҾ༻ https://arxiv.org/pdf/1708.05375.pdf
Learning a Multi-View Stereo Machine ▸ චऀ • Abhishek Kar,
Christian Häne, Jitendra Malik ʢUC Berkeley) ▸ ֓ཁ • Multi View StereoʢMVSʣʹΑΔີͳ3࣍ݩ෮ݩΛDeep LearningͰEnd2Endʹֶश • MVSΛ”ֶशͰ͖Δ”ͷͰແ͍͔ͱ͍͏ٙʹ͑Δ 2
എܠ ▸ Multi View Stereoͱ 1. ಛநग़ 2. Ϛονϯά 3.
̏࣍ݩ෮ݩ 4. Τϥʔͷআڈ 3
എܠ ▸ Multi View Stereoͱ 1. ಛநग़ 2. Ϛονϯά 3.
̏࣍ݩ෮ݩ 4. Τϥʔͷআڈ ==> DeepԿͰશͯղܾͰ͖ͦ͏ 4
എܠ ▸ Multi View Stereoͱ 1. ಛநग़ɹ← CNNͰ͍͚Δ 2. Ϛονϯά
3. ̏࣍ݩ෮ݩ 4. Τϥʔͷআڈ 5
എܠ ▸ Multi View Stereoͱ 1. ಛநग़ 2. Ϛονϯάɹ← CNNͱRNNͰ͍͚Δ
3. ̏࣍ݩ෮ݩ 4. Τϥʔͷআڈ 6
എܠ ▸ Multi View Stereoͱ 1. ಛநग़ 2. Ϛονϯά 3.
̏࣍ݩ෮ݩɹ← DeconvͰ͍͚Δ 4. Τϥʔͷআڈ 7
എܠ ▸ Multi View Stereoͱ 1. ಛநग़ 2. Ϛονϯά 3.
̏࣍ݩ෮ݩ 4. Τϥʔͷআڈɹ← Encoder-DecoderͰ͍͚Δ 8
DeepԿͰࡾ࣍ݩ෮ݩ ▸ 3DR2N2(ECCV2016) • ෳը૾ΛΤϯίʔυ͠ɺLSTMͰϚονϯά 9 http://3d-r2n2.stanford.edu
DeepԿͰࡾ࣍ݩ෮ݩ ▸ 3D Shape Reconstruction by Modeling 2.5D Sketch (NIPS2017)
• ϦΞϧͷը૾͔Β2.5DͷεέονΛى͜͠ɺ2.5DεέονΛͱʹ 3DshapeਪఆΛEnd2EndֶशͰ͢Δ 10 https://arxiv.org/pdf/1711.03129.pdf
͢༰ ▸ શମ૾ ▸ ख๏ ▸ ࣮ݧ ▸ ·ͱΊ 11
શମ૾ 12 http://bair.berkeley.edu/blog/2017/09/05/unified-3d/
શମ૾ 13 Learnt Stereo Machines
ख๏ ▸ Image Encoder • Encoder-DecoderܕʢU-netʣͷઃܭ • Ϛονϯάʹ༻͍Δ̎DͷಛϚοϓ࡞ • ࣍ݩ2DnಛϚο
14
ख๏ ▸ Unplojection ▸ 2࣍ݩͷಛϚοϓ3࣍ݩͷຊདྷ͋Δ͖ಛϚοϓ͔ΒࣹӨ ▸ 3࣍ݩάϦουʹٯࣹӨ 15 http://bair.berkeley.edu/blog/2017/09/05/unified-3d/
ख๏ ▸ Unplojection ▸ 2࣍ݩͷಛϚοϓ3࣍ݩͷຊདྷ͋Δ͖ಛϚοϓ͔ΒࣹӨ ▸ 3࣍ݩάϦουʹٯࣹӨ 16 http://bair.berkeley.edu/blog/2017/09/05/unified-3d/
ख๏ ▸ Unplohection ▸ 2࣍ݩͷಛϚοϓ3࣍ݩͷຊདྷ͋Δ͖ಛϚοϓ͔ΒࣹӨ ▸ 3࣍ݩάϦουʹٯࣹӨ 17 http://bair.berkeley.edu/blog/2017/09/05/unified-3d/
ख๏ ▸ Unplohection ▸ 2࣍ݩͷಛϚοϓ3࣍ݩͷຊདྷ͋Δ͖ಛϚοϓ͔ΒࣹӨ ▸ 3࣍ݩάϦουʹٯࣹӨ 18 http://bair.berkeley.edu/blog/2017/09/05/unified-3d/
ख๏ ▸ Recurrent Grid Fusion • 3࣍ݩͷಛϚοϓͷϚονϯάΛGated Recurrent Unit(GRU)Ͱ •
GRUʹ͍࣋ͬͯͨ͘Ίɺ3D convolutionΛ༻ • ͜ͷաఔ͕MVSͷܭࢉϚονϯάΛ୲ • ֶशͷࡍը૾ͷೖྗॱΛϥϯμϜʹೖΕସ͑Δ 19
ख๏ ▸ 3D Grid Reasoning • GRUͰ̏࣍ݩάϦουʹͨ͠ΒϊΠζ͕ଟ͔ͬͨɻ • 3U-netͰEncode Decode͢ΔͱFilteringͰ͖Δ
20
ख๏ ▸ Differentiable Projection • Depthͷ෮ݩʹL1 loss(high frequency informationͷͨΊ) •
Voxelͷ෮ݩʹvoxel͝ͱͷcross entropy loss 21
࣮ݧ ▸ σʔληοτ • ShapeNetσʔλΛར༻ • ̏࣍ݩCADϞσϧͷެ։σʔληοτ 22 https://shapenet.cs.stanford.edu/shrec17/
࣮ݧ • ೖྗը૾ ▸ ShapeNetͷ3DϞσϧΛϨϯμϦϯάͯ͠224x224x3 ▸ ̍ࢹ͋ͨΓ̐ຕ ▸ Χϝϥϙʔζ •
Ξτϓοτ ▸ Depth: 224x224x3 ▸ Voxel: 32x32x32 23
࣮ݧ ▸ ݁Ռ 24 3DR2N2ͱൺɺࡉ͔͍෮ݩ͕Մೳ
࣮ݧ ▸ ݁Ռ 25 3DR2N2ͱൺɺগͳ͍ຕͰ෮ݩ͕Մೳ ຕ૿͑Δͱੑೳ্͕͕Δ
࣮ݧ ▸ ݁Ռ 26 stereo matchingͰ෮ݩ͠ͳ͍ ૭෮ݩՄೳ
࣮ݧ ▸ ݁Ռ 27 stereo matchingʹൺ গͳ͍ຕͰ෮ݩ͕Մೳ චऀᐌ͘ CNNͷίϯςΫετΛݟΔྗ ैདྷͷstereo
matchingΛ͙྇ DepthMapͷਪఆ݁ՌΛෳΈ߹Θͤͯ̏࣍ݩ෮ݩͨ͠
·ͱΊ ▸ Learnt Stereo MachinesΛఏҊ ▸ ෳࢹ͔Βͷೖྗը૾Λݩʹɺ DepthMapͱVoxelͷਪఆ͕Մೳͱͳͬͨ ▸ ՝
• ग़ྗVoxel͕32x32x32ͱখ͍͞ 28