$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NIPS2017reading_3Dreconstruction
Search
望月紅葉さんと幸せな家庭を築きたい
January 27, 2018
Research
0
1.5k
NIPS2017reading_3Dreconstruction
望月紅葉さんと幸せな家庭を築きたい
January 27, 2018
Tweet
Share
More Decks by 望月紅葉さんと幸せな家庭を築きたい
See All by 望月紅葉さんと幸せな家庭を築きたい
shadow-detection-with-conditional-generative-adversarial-networks
momijifullmoon
0
150
unsupervised-learning-of-depth-and-ego-motion-from-monocular-video-using-3d-geometric-constraints
momijifullmoon
0
460
ABEJA Innovation Meetup NIPS PointNet++
momijifullmoon
1
500
Other Decks in Research
See All in Research
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
110
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
12
6.5k
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
260
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
370
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
150
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
190
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
260
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
290
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
140
POI: Proof of Identity
katsyoshi
0
120
When Learned Data Structures Meet Computer Vision
matsui_528
1
1.7k
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
190
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
286
14k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
57
Leadership Guide Workshop - DevTernity 2021
reverentgeek
0
170
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.9k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
0
63
Why Our Code Smells
bkeepers
PRO
340
57k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
230
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
0
250
A Modern Web Designer's Workflow
chriscoyier
698
190k
Transcript
̏࣍ݩ෮ݩʹؔͯ͠ Learning a Multi-View Stereo Machine NIPS2017จಡΈձˏΫοΫύου 1 ಛʹදه͕ͳ͍ݶΓɺҎԼͷࢿྉ͔ΒҾ༻ https://arxiv.org/pdf/1708.05375.pdf
Learning a Multi-View Stereo Machine ▸ චऀ • Abhishek Kar,
Christian Häne, Jitendra Malik ʢUC Berkeley) ▸ ֓ཁ • Multi View StereoʢMVSʣʹΑΔີͳ3࣍ݩ෮ݩΛDeep LearningͰEnd2Endʹֶश • MVSΛ”ֶशͰ͖Δ”ͷͰແ͍͔ͱ͍͏ٙʹ͑Δ 2
എܠ ▸ Multi View Stereoͱ 1. ಛநग़ 2. Ϛονϯά 3.
̏࣍ݩ෮ݩ 4. Τϥʔͷআڈ 3
എܠ ▸ Multi View Stereoͱ 1. ಛநग़ 2. Ϛονϯά 3.
̏࣍ݩ෮ݩ 4. Τϥʔͷআڈ ==> DeepԿͰશͯղܾͰ͖ͦ͏ 4
എܠ ▸ Multi View Stereoͱ 1. ಛநग़ɹ← CNNͰ͍͚Δ 2. Ϛονϯά
3. ̏࣍ݩ෮ݩ 4. Τϥʔͷআڈ 5
എܠ ▸ Multi View Stereoͱ 1. ಛநग़ 2. Ϛονϯάɹ← CNNͱRNNͰ͍͚Δ
3. ̏࣍ݩ෮ݩ 4. Τϥʔͷআڈ 6
എܠ ▸ Multi View Stereoͱ 1. ಛநग़ 2. Ϛονϯά 3.
̏࣍ݩ෮ݩɹ← DeconvͰ͍͚Δ 4. Τϥʔͷআڈ 7
എܠ ▸ Multi View Stereoͱ 1. ಛநग़ 2. Ϛονϯά 3.
̏࣍ݩ෮ݩ 4. Τϥʔͷআڈɹ← Encoder-DecoderͰ͍͚Δ 8
DeepԿͰࡾ࣍ݩ෮ݩ ▸ 3DR2N2(ECCV2016) • ෳը૾ΛΤϯίʔυ͠ɺLSTMͰϚονϯά 9 http://3d-r2n2.stanford.edu
DeepԿͰࡾ࣍ݩ෮ݩ ▸ 3D Shape Reconstruction by Modeling 2.5D Sketch (NIPS2017)
• ϦΞϧͷը૾͔Β2.5DͷεέονΛى͜͠ɺ2.5DεέονΛͱʹ 3DshapeਪఆΛEnd2EndֶशͰ͢Δ 10 https://arxiv.org/pdf/1711.03129.pdf
͢༰ ▸ શମ૾ ▸ ख๏ ▸ ࣮ݧ ▸ ·ͱΊ 11
શମ૾ 12 http://bair.berkeley.edu/blog/2017/09/05/unified-3d/
શମ૾ 13 Learnt Stereo Machines
ख๏ ▸ Image Encoder • Encoder-DecoderܕʢU-netʣͷઃܭ • Ϛονϯάʹ༻͍Δ̎DͷಛϚοϓ࡞ • ࣍ݩ2DnಛϚο
14
ख๏ ▸ Unplojection ▸ 2࣍ݩͷಛϚοϓ3࣍ݩͷຊདྷ͋Δ͖ಛϚοϓ͔ΒࣹӨ ▸ 3࣍ݩάϦουʹٯࣹӨ 15 http://bair.berkeley.edu/blog/2017/09/05/unified-3d/
ख๏ ▸ Unplojection ▸ 2࣍ݩͷಛϚοϓ3࣍ݩͷຊདྷ͋Δ͖ಛϚοϓ͔ΒࣹӨ ▸ 3࣍ݩάϦουʹٯࣹӨ 16 http://bair.berkeley.edu/blog/2017/09/05/unified-3d/
ख๏ ▸ Unplohection ▸ 2࣍ݩͷಛϚοϓ3࣍ݩͷຊདྷ͋Δ͖ಛϚοϓ͔ΒࣹӨ ▸ 3࣍ݩάϦουʹٯࣹӨ 17 http://bair.berkeley.edu/blog/2017/09/05/unified-3d/
ख๏ ▸ Unplohection ▸ 2࣍ݩͷಛϚοϓ3࣍ݩͷຊདྷ͋Δ͖ಛϚοϓ͔ΒࣹӨ ▸ 3࣍ݩάϦουʹٯࣹӨ 18 http://bair.berkeley.edu/blog/2017/09/05/unified-3d/
ख๏ ▸ Recurrent Grid Fusion • 3࣍ݩͷಛϚοϓͷϚονϯάΛGated Recurrent Unit(GRU)Ͱ •
GRUʹ͍࣋ͬͯͨ͘Ίɺ3D convolutionΛ༻ • ͜ͷաఔ͕MVSͷܭࢉϚονϯάΛ୲ • ֶशͷࡍը૾ͷೖྗॱΛϥϯμϜʹೖΕସ͑Δ 19
ख๏ ▸ 3D Grid Reasoning • GRUͰ̏࣍ݩάϦουʹͨ͠ΒϊΠζ͕ଟ͔ͬͨɻ • 3U-netͰEncode Decode͢ΔͱFilteringͰ͖Δ
20
ख๏ ▸ Differentiable Projection • Depthͷ෮ݩʹL1 loss(high frequency informationͷͨΊ) •
Voxelͷ෮ݩʹvoxel͝ͱͷcross entropy loss 21
࣮ݧ ▸ σʔληοτ • ShapeNetσʔλΛར༻ • ̏࣍ݩCADϞσϧͷެ։σʔληοτ 22 https://shapenet.cs.stanford.edu/shrec17/
࣮ݧ • ೖྗը૾ ▸ ShapeNetͷ3DϞσϧΛϨϯμϦϯάͯ͠224x224x3 ▸ ̍ࢹ͋ͨΓ̐ຕ ▸ Χϝϥϙʔζ •
Ξτϓοτ ▸ Depth: 224x224x3 ▸ Voxel: 32x32x32 23
࣮ݧ ▸ ݁Ռ 24 3DR2N2ͱൺɺࡉ͔͍෮ݩ͕Մೳ
࣮ݧ ▸ ݁Ռ 25 3DR2N2ͱൺɺগͳ͍ຕͰ෮ݩ͕Մೳ ຕ૿͑Δͱੑೳ্͕͕Δ
࣮ݧ ▸ ݁Ռ 26 stereo matchingͰ෮ݩ͠ͳ͍ ૭෮ݩՄೳ
࣮ݧ ▸ ݁Ռ 27 stereo matchingʹൺ গͳ͍ຕͰ෮ݩ͕Մೳ චऀᐌ͘ CNNͷίϯςΫετΛݟΔྗ ैདྷͷstereo
matchingΛ͙྇ DepthMapͷਪఆ݁ՌΛෳΈ߹Θͤͯ̏࣍ݩ෮ݩͨ͠
·ͱΊ ▸ Learnt Stereo MachinesΛఏҊ ▸ ෳࢹ͔Βͷೖྗը૾Λݩʹɺ DepthMapͱVoxelͷਪఆ͕Մೳͱͳͬͨ ▸ ՝
• ग़ྗVoxel͕32x32x32ͱখ͍͞ 28