Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Discovering Universal Geometry in Embeddings wi...
Search
Momose Oyama
December 21, 2023
Research
1
980
Discovering Universal Geometry in Embeddings with ICA
2023年12月20日 NLPコロキウム
Momose Oyama
December 21, 2023
Tweet
Share
More Decks by Momose Oyama
See All by Momose Oyama
独立成分分析を用いた埋め込み表現の視覚的な理解
momoseoyama
5
1.8k
Other Decks in Research
See All in Research
Looking for Escorts in Sydney?
lunsophia
1
130
近似動的計画入門
mickey_kubo
4
1k
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
13
5.8k
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
24
17k
CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations
satai
3
230
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
710
Cross-Media Information Spaces and Architectures
signer
PRO
0
230
電通総研の生成AI・エージェントの取り組みエンジニアリング業務向けAI活用事例紹介
isidaitc
1
800
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
200
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
1.5k
数理最適化に基づく制御
mickey_kubo
6
700
20250725-bet-ai-day
cipepser
2
330
Featured
See All Featured
Fireside Chat
paigeccino
37
3.6k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
19k
Site-Speed That Sticks
csswizardry
10
740
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Gamification - CAS2011
davidbonilla
81
5.4k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.6k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
182
54k
For a Future-Friendly Web
brad_frost
179
9.9k
Speed Design
sergeychernyshev
32
1k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Thoughts on Productivity
jonyablonski
69
4.8k
Transcript
Discovering Universal Geometry in Embeddings with ICA 2023.12.20 NLPコロキウム Hiroaki
Yamagiwa*, Momose Oyama*, Hidetoshi Shimodaira EMNLP2023
⼤⼭百々勢 (Oyama Momose) l 京都⼤学 下平研究室 修⼠2年 (D進の予定) l 埋め込み表現の研究
◦ Norm of Word Embedding Encodes Information Gain [Oyama, Yokoi, Shimodaira, EMNLP 2023] [Paper] ◦ Discovering Universal Geometry in Embeddings with ICA [Yamagiwa*, Oyama*, Shimodaira, EMNLP 2023] [Paper] l 国内のコミュニティ ◦ NLP, YANS ◦ IBIS, 統計連合⼤会 2
道具の紹介︓ Independent Component Analysis (ICA)
ICAは独⽴な軸を⾒つける変換 𝐗𝐁 = 𝐒 ⼊⼒の⾏列: (𝑛, 𝑑) 変換後の⾏列: (𝑛, 𝑑)
𝑑個の列が互いに独⽴ 変換⾏列: (𝑑, 𝑑) 4
ICAは独⽴な軸を⾒つける変換 𝐗𝐁 = 𝐒 ⼊⼒の⾏列: (𝑛, 𝑑) 変換⾏列: (𝑑, 𝑑)
𝐗 (⼊⼒) 𝐒 (出⼒) ⾳声 𝑑箇所のマイクが拾った⼈々の話し声 𝑛秒分 𝑑個に分離した話し声のデータ 𝑛秒分 5 変換後の⾏列: (𝑛, 𝑑) 𝑑個の列が互いに独⽴
ICAは独⽴な軸を⾒つける変換 𝐗 (⼊⼒) 𝐒 (出⼒) ⾳声 𝑑箇所のマイクが拾った⼈々の話し声 𝑛秒分 𝑑個に分離した話し声のデータ 𝑛秒分
単語埋め込み 𝑑個の次元に分散して表現された 𝑛単語分の意味情報 𝑑個の独⽴な意味情報に分離された 𝑛単語の表現 (これから⾒ていきます) 𝐗𝐁 = 𝐒 ⼊⼒の⾏列: (𝑛, 𝑑) 変換⾏列: (𝑑, 𝑑) 6 変換後の⾏列: (𝑛, 𝑑) 𝑑個の列が互いに独⽴
単語埋め込みをICAで分析
単語ベクトルをヒートマップで可視化 l Skip-gram with Negative Samplingで学習した 単語ベクトル l ヒートマップ ◦
⾏: 単語ベクトル ◦ 列: 次元 (5/300) l 各要素の⼤⼩は解釈できない ◦ 「分散」表現なので ⾃然なこと 8
PCAをしても解釈性に変化なし 9
ICA後は各次元が持つ意味を解釈できる l 16軸: ⾷べ物 (dishes, …) l 26軸: ⾞ (cars,
…) l 35軸: 映画 (film, …) l 34軸: イタリア (italian, …) l 56軸: ⽇本 (japanese, …) 10
独⽴成分は「尖って」いて解釈可能 l 2軸に沿った散布図 ◦ イタリア軸と⾞軸 ◦ ⽇本軸と映画軸 l 加法構成性 ◦
Ferrari ≈ italian + cars ◦ kurosawa ≈ japanese + film l 300次元よりも⼩さな部分 空間で単語の意味を表現 11
ICAの結果の普遍性
まず、英語の埋め込みを可視化 英語 13
ICA: 異なる⾔語の埋め込みで形と意味が共通 14
PCA: 共通の性質を⾒つけられない 15
ICA: モデルやドメインの違いを超えた普遍性 16
PCA: やはりうまくいかない 17
なぜPCAではなくICAが うまくいくのか
PCAが捉えきれない⾼次情報をICAは捉える 𝐒 = 𝐗𝐀𝐑 ICA が独⽴な軸を⾒つける⼿順 1. ⽩⾊化 (PCA): 各軸を無相関にする
2. 直交変換: 各軸の⾮ガウス性を最⼤化する 19
PCAが捉えきれない⾮ガウス性をICAは捉える ICA が独⽴な軸を⾒つける⼿順 1. ⽩⾊化 (PCA): 各軸を無相関にする 2. 直交変換: 各軸の⾮ガウス性を最⼤化する
lどれだけガウス分布 から逸脱しているか l例えば歪度や尖度 で測定できる 𝐒 = 𝐗𝐀𝐑 20
PCAが捉えきれない⾮ガウス性をICAは捉える ICA = PCA + 直交変換 l PCA: 「尖った形状」を⾒つけられない l
ICA: 「尖った形状」を⾒つけられる 𝐒 = 𝐗𝐀𝐑 21
まとめ
まとめ l ICAを使って 埋め込みを分析した l わかったこと 1. 埋め込みの独⽴成分は 「尖って」いて解釈可能 2.
⾔語・モデル・ドメインの 違いを超えて普遍的 l PCAだと上⼿くいかない 23