Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Speaker Deck
PRO
Sign in
Sign up for free
ペパボ研究所がOneLoveな理由/Why pepaken is one love
monochromegane
July 06, 2017
Technology
3
640
ペパボ研究所がOneLoveな理由/Why pepaken is one love
ペパボ研究所 やさしい発表会 - ペパボ研究所で事業を差別化する -
monochromegane
July 06, 2017
Tweet
Share
More Decks by monochromegane
See All by monochromegane
再帰化への認知的転回/the-turn-to-recursive-system
monochromegane
0
160
仮想的な探索を用いて文脈や時間の経過による番狂わせにも迅速に追従する多腕バンディット手法/wi2_lkf_bandits
monochromegane
0
180
Synapse: 文脈と時間経過に応じて推薦手法の選択を最適化するメタ推薦システム/smash21-synapse
monochromegane
0
140
なめらかなシステムと運用維持の未来/dicomo2021-coherently-fittable-system
monochromegane
1
4.8k
go:embedでExplainable Binaryを作る/fukoukago17_go_code_embedding
monochromegane
2
130
非定常な多腕バンディット問題において効率的に変化を察知する方式の検討/wsa8_predictive_exploratory_model
monochromegane
0
1.9k
変化検出と要約データ構造を用いた利用者の嗜好の変化に迅速に追従する多腕バンディット手法/iots2020-adaptive-linear-mab
monochromegane
0
530
嗜好伝達コミュニケーションの効率化を目指した伝達方式の検討/wsa7_local_preference
monochromegane
0
2.3k
なめらかなシステムの実現に向けて/coherently-fittable-system
monochromegane
0
270
Other Decks in Technology
See All in Technology
プログラマがオブジェクト指向しても幸せになれない理由
shirayanagiryuji
0
170
XRとシビックテック
satoshirobatofujimoto
0
110
SlackBotで あらゆる業務を自動化。問い合わせ〜DevOpsまで #CODT2022
kogatakanori
0
1k
UIKitのアップデート #WWDC22
akatsuki174
4
360
開発組織の生産性を可視化する State of DevOpsとFour Keysとは / deep dive into State of DevOps
yfcgpsebp
0
310
Autonomous Database Cloud 技術詳細 / adb-s_technical_detail_jp
oracle4engineer
PRO
10
18k
FoodTechにおける商流・金流・物流の進化/Evolution of Commercial, Financial, and Logistics in FoodTech
dskst
0
420
Retca Cloud
bau
0
610
【Pythonデータ分析勉強会#33】「DearPyGuiに入門しました」の続き~Image-Processing-Node-Editor~
kazuhitotakahashi
0
200
拡散確率モデルと音声波形生成
yumakoizumi
1
750
俺の Laravel がこんなに速いわけがない! / My Laravel Too Fast
hanhan1978
0
120
データ分析基盤のはじめかた
chanyou0311
0
130
Featured
See All Featured
Atom: Resistance is Futile
akmur
255
20k
jQuery: Nuts, Bolts and Bling
dougneiner
56
6.4k
Thoughts on Productivity
jonyablonski
43
2.3k
Navigating Team Friction
lara
175
11k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
351
21k
VelocityConf: Rendering Performance Case Studies
addyosmani
316
22k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
7
1.1k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
315
19k
Designing the Hi-DPI Web
ddemaree
272
32k
Build The Right Thing And Hit Your Dates
maggiecrowley
19
1.2k
Fashionably flexible responsive web design (full day workshop)
malarkey
396
62k
The Straight Up "How To Draw Better" Workshop
denniskardys
225
120k
Transcript
- ϖύϘݚڀॴͰࣄۀΛࠩผԽ͢Δ - ࡾ༔հ / Pepabo R&D Institute, GMO Pepabo,
Inc. 2017.07.06 ϖύϘݚڀॴ ༏͍͠ൃදձ ϖύϘݚڀॴ͕OneLoveͳཧ༝
ϓϦϯγύϧΤϯδχΞ ࡾ ༔հ / @monochromegane 2 http://blog.monochromegane.com Yusuke Miyake ϖύϘݚڀॴ
ݚڀһ
1. ϖύϘݚڀॴͷϛογϣϯ 2. ϖύݚͱαʔϏεͷؔ 3. ݚڀ։ൃࣄྫͷհ 3 ࣍
1. ϖύϘݚڀॴͷϛογϣϯ
5 ϖύϘݚڀॴ(ུশʮϖύݚʯ)ɺࣄۀΛࠩผԽ Ͱ͖Δٕज़Λ࡞Γग़ͨ͢ΊʹʮͳΊΒ͔ͳγες Ϝʯͱ͍͏ίϯηϓτͷԼͰݚڀ։ൃʹऔΓΉ ৫Ͱ͢ɻ ❝ ϖύϘݚڀॴʹ͍ͭͯ http://rand.pepabo.com/
ͳͥݚڀ͔
• ݚڀɺࣄ࣮ཧΛ໌Β͔ʹ͢Δʹ͋ͨΓɺ৽نੑɺ༗ޮੑɺ৴པੑΛ٬؍ తʹࣔ͞ͳ͚ΕͳΒͳ͍ • طଘख๏ͷௐࠪ(వ)ɺ뱌(ઈ)ɺจԽ(࿅)Λܦͯɺख๏ͷঢ՚(ൃ)ʹࢸΔ • ݚڀతΞϓϩʔνͷ෮ʹΑͬͯɺཧख๏͕લਐ͢Δ(Ԡ༻ɺܥ౷) • ٕज़͕ҰൠԽ͢Δ࣌ͰɺݚڀΛ௨ͯ͋͠Δख๏ʹ͓͚Δ৽نੑΛݗҾͰ͖ ΔଘࡏͱͳΔ͜ͱ͕ɺࠩผԽͰ͖Δٕज़Λ࣋ͭ͜ͱʹͭͳ͕Δ
7 ͳͥݚڀ͔ ࠩผԽͰ͖Δٕज़Λ࡞Γग़ͨ͢ΊʹɺݚڀతΞϓϩʔν͕༗ޮ
2. ϖύݚͱαʔϏεͷؔ
9 ΞΧσϛοΫͳਫ४ʹ͓͚Δ৽نੑɾ༗ޮੑɾ৴ པੑΛٻ͢ΔݚڀΛߦ͏ͱͱʹɺݚڀ։ൃ͠ ٕͨज़Λ࣮ࡍͷγεςϜͱ࣮ͯ͠ɾఏڙ͢Δ͜ ͱΛ௨ͯ͠ɺࣄۀͷʹߩݙ͠·͢ɻ ❝ ϖύϘݚڀॴʹ͍ͭͯ http://rand.pepabo.com/
10 ϖύݚͱαʔϏεͷؔ ࣄۀΛࠩผԽ͢ΔͨΊʹɺݚڀॴͱαʔϏεͷ࿈ܞ͕ඞਢ ݚڀ ։ൃ ӡ༻ ՝ͷڞ༗ ݚڀʹΑΔղܾ ಋೖ࣌ͷΤϯδχΞؒ࿈ܞ ݚڀ։ൃ݁ՌΛଈ࣌αʔϏεʹಋೖ͢ΔΈͱɺಋೖޙͷϑΟʔυόοΫʹΑΔαΠΫϧͷߴ
ԽʹΑͬͯɺݚڀ։ൃͷߴԽͱࣄۀͷࠩผԽʹͭͳ͛Δ
11
3. ݚڀ։ൃࣄྫͷհ
ಛநग़ثͷֶशͱߪങཤྺΛ ඞཁͱ͠ͳ͍ྨࣅը૾ʹΑΔ ؔ࿈ݕࡧγεςϜ
14 ՝ͷڞ༗ େ͖ͳ୯ҐͰͷ՝ʢઓུʣͷڞ༗ • minneʹ͓͍ͯɺ࡞ͱͷग़ձ͍ͷ֬Λ্͛Δ͜ͱ͕ઓུͷͻͱͭͱ্ͯ͠ ͛ΒΕ͍ͯΔɻݱࡏɺminneʹඦສͷ࡞͕ొ͞Ε͓ͯΓɺαʔϏε ར༻ऀͷ௨ৗͷߦಈͰશͯͷ࡞ΛݟͯճΔ͜ͱࠔͰ͋Δɻ • ඞવతʹαʔϏεར༻ऀ͕ߪೖ͍ͨ͠ͱࢥ͏࡞ͱग़ձ͏֬Լ͖ͯͯ͠ ͓Γɺ͜ͷ֬Λ্͛Δ͜ͱ͕ɺ͓ങ͍ମݧͷ࠷େԽͷͨΊʹٻΊΒΕ͍ͯ
Δɻ
• ճ༡ͷಋઢΛ૿͢ඞཁ͕͋ΔɻAmazonָఱͱ͍ͬͨECαΠτͰؔ࿈ ࡞Λఏࣔ͢Δ͜ͱͰͷݕ౼Λܧଓͤ͞Δճ༡͕͋ΓɺͦͷͨΊʹͳΜ Β͔ͷ؍Ͱؔ࿈͍ͯ͠Δ͜ͱΛγεςϜతʹѻ͑Δঢ়ଶʹ͢Δඞཁ͕͋Δ 15 ண؟ͱํࣜ • ௨ৗɺDB্ʹؚ·ΕΔใʢߏԽͨ͠ใʣʹΑͬͯಉҰࢹͰ͖Δͷ ʢminneͰݴ͑ಉ͡ΧςΰϦɺಉ͡৭ʣͳͲΛ༻͍Δ͕ɺ͜Ε·Ͱʹͳ͍ؔ ࿈࡞ͷಋઢΛ૿ͨ͢Ίɺ·ͩߏԽ͞Ε͍ͯͳ͍ใΛminneͰऔΓѻ
͑ΔΑ͏ʹ͍ͯ͘͠ɻ
• ߪങཤྺͷใ͕ෆཁͰྨ༻ͷՃใͱͯ͠Ͱͳ͘ɺৗʹઃఆ͞ΕΔ ը૾Λର • ಋೖઌͷECαΠτͷʹґଘ͠ͳֶ͍शෆཁͰ൚༻తͳֶशࡁΈωοτ ϫʔΫΛಛநग़ثͱͯ͠࠾༻ • ಛநग़ث͔ΒಘΒΕͨಛྔΛͱʹۙࣅۙ୳ࡧʹΑΓྨࣅը૾Λݕࡧ 16 ఏҊख๏
17
ಛྔม 18 Service Object Storage GCP image to data data
to feature vectorizer by Inception-v3 Annoy Workers • ͋Δ࣌·Ͱͷ࡞ը૾ҰཡΛಛྔʹม͢Δ • มͨ͠ಛྔҰཡΛۙࣅۙ୳ࡧσʔλϕʔεʹೖ͢Δ
• ۙࣅۙ୳ࡧσʔλϕʔεΛmruby-annoy + ngx_mrubyʹͯAPIԽ • ࡞ৄࡉʹྨࣅը૾Λ༻͍ͨؔ࿈࡞Λදࣔ͢Δ 19 ྨࣅը૾ݕࡧ Nyah mruby-annoy
on ngx_mruby products#show product_id nearest products CTR Analytics NNS ˞ۙࣅۙ୳ࡧ࣌ʹେ෦ͷΠϯσο ΫεͷΞΫηε͕ൃੜ͢ΔͨΊ࣮༻ తͳΛಘΔͨΊʹσʔλϕʔε ϑΝΠϧ͕શͯϖʔδΩϟογϡʹࡌ ΔαΠζͷϝϞϦ͕ඞཁ
ྨࣅը૾ʹΑΔؔ࿈࡞ݕࡧ 20
ྨࣅը૾ʹΑΔؔ࿈࡞ݕࡧ 21
ΫϦοΫͱίϯόʔδϣϯ 22 طଘ ఏҊ $53 $73
˞ఏҊख๏ʹΑΔબఆ͕ߦ͑ͳ͍߹ʹαʔϏεͷ ػձଛࣦΛආ͚ΔͨΊطଘख๏ʹΑΔબఆΛߦͬͯ ͍ΔͨΊݕূظؒதͷ֤ख๏ͷදׂࣔ߹طଘ ɺఏҊͰ͋ͬͨ ˞ίϯόʔδϣϯΫϦοΫʹର͢Δߪೖ͔ ΒٻΊͨ طଘ ఏҊ ૉࡐɾࡐྉγΣϧ ૉࡐɾࡐྉϦϘϯɾςʔϓ ૉࡐɾࡐྉϘλϯ ͵͍͙ΔΈɾਓܗ͋Έ͙ΔΈ χοτɾฤΈηʔλʔɾΧʔσΟΨϯ ఏҊख๏͕༗ޮͰ͋ͬͨΧςΰϦ
ݚڀใࠂΠϯλʔωοτͱӡ༻ٕज़ʢIOTʣ 23 ࡾ ༔հ, দຊ ྄հ, ྗ ݈࣍, ܀ྛ ݈ଠ,
ಛநग़ثͷֶ शͱߪങཤྺΛඞཁͱ͠ͳ͍ྨࣅը૾ʹΑΔؔ࿈ݕࡧγ εςϜ, ݚڀใࠂΠϯλʔωοτͱӡ༻ٕज़ʢIOTʣ, Vol.2017-IOT-37(4), pp.1-8, May 2017 http://id.nii.ac.jp/1001/00178892/
ϑΟʔυόοΫ
Gannoy Approximate nearest neighbor search server and dynamic index written
in Golang. https://github.com/monochromegane/gannoy
GannoyʹΑΔಈతΠϯσοΫεߋ৽+ྨࣅը૾ݕࡧ 26 Features Similar items Gannoy [2048]float64 query by http
find similar features mapping similar features to items response Deep CNN index Features [2048]float64 Deep CNN register by http
ΞΫηεස༧ଌʹجͮ͘ ԾαʔόͷܭըతΦʔτεέʔϦϯά
28 ՝ͷڞ༗
• ैྔ՝ۚͷԾαʔόӡ༻ʹ͓͍ͯ࠷దͳϦιʔεधཁͷ༧ଌίετΧοτʹͭͳ͕Δ • WebαʔϏεͷϦιʔεधཁϦΫΤετॲཧ݅ɺͭ·ΓΞΫηεͱ૬͕ؔ͋Δͣ • Ϧιʔεͷ૿ݮʹ͋Δఔͷ͕͔͔࣌ؒΔͨΊɺϦΞϧλΠϜͰͳ͘ҰఆִؒͰͷΞ Ϋηε༧ଌͰेͱߟ͑Δ 29 ண؟ͱํࣜ ΞΫηεΛ༧ଌͰ͖ΔΑ͏ʹͳΕ
ɺϐʔΫλΠϜʹ͋Θͤͨݟੵ Γ͔Β࣌ؒ͝ͱͷ࠷దʢͱࢥΘΕ ΔʣݟੵΓ͕ՄೳʹͳΔ
• WebαʔϏεશମͰҰఆ࣌ؒʹॲཧͨ͠ΞΫηεසͰ͋ΔεϧʔϓοτΛ ࢦඪͱ͠ɺӡ༻্ɺܦݧతʹѲ͞Ε͍ͯΔ҆ఆͯ͠ӡ༻ՄೳͳΛࢦ͢ • աڈͷΞΫηεසͱෆఆظͳมಈཁҼ͔Β༧ଌϞσϧΛಋ͘ • ༧ଌతͳߏมߋΛ՝ۚ୯ҐͰ͋Δ1࣌ؒΛ୯Ґʹߦ͏ 30 ఏҊख๏
31 ఏҊख๏
32 ΞΫηεස༧ଌϞσϧ ΞΫηεස༧ଌϞσϧ ֶशσʔλΫϥυαʔϏεͷඪ४՝ ۚ୯ҐͰ͋Δ࣌ؒΛཻͱ͢Δ 8FCαʔϏεͷ࠷ఆৗੑΛ֬ೝͰ͖Δ࣌ؒͷσʔλ Λೖྗͱ͠ɺ࣍ͷ࣌ؒͷΞΫηεස༧ଌΛग़ྗͱ͢Δ ˞࣌ؒޙҎ߱༧ଌΛؚΊͨظΛೖྗͱ͢Δ
33 Ծαʔόࢉग़ • ༧ଌͨ͠ΞΫηεසΛجʹɺWebαʔϏεΛ҆ఆͯ͠ӡ༻ Ͱ͖Δ҆ͱͳΔεϧʔϓοτΛ֬อͰ͖ΔΛٻΊΔ ༧ଌΞΫηεසʹର͠εϧʔϓοτΛ ֬อͰ͖ΔΛࢉग़͢Δ 5<ΞΫηεස> 1<༧ଌΞΫηεස࣌> -αʔόԼݶ
• ࠓճͷධՁͰɺରͷ WebαʔϏεʹ͓͍ͯཌ ͕ฏͷ߹ɺؒʹΞΫ ηεස͕૿Ճ͢Δͱ͍͏ ܦݧଇΛཁҼͱͯ͠Ճ͑ͨ 34 ඇఆৗͷཁҼͷՃຯʹΑΔ༧ଌਫ਼ͷධՁ
35 ඇఆৗͷཁҼͷՃຯʹΑΔ༧ଌਫ਼ͷධՁ ؒʹීஈͱҟͳΔͱͳΔಛੑΛଊ ͑ͨ༧ଌ͕ߦΘΕ͍ͯΔɻ
36 ܭըతΦʔτεέʔϦϯάͷධՁ ԾαʔόͷਪҠ ͋ͨΓͷαʔό૯ىಈ࣌ؒ"܈ ը૾্ Ͱ͔࣌ؒΒ࣌ؒʹɺ#܈ ը૾Լ Ͱ ͔࣌ؒΒ࣌ؒʹݮ
˞"܈ͷ࣌ࢉग़͕ԼݶΛԼ ճͬͨͨΊɺͷมಈݟΒΕͳ͍
37 ܭըతΦʔτεέʔϦϯάͷධՁ ΞΫηεසͷਪҠ ͋ͨΓΞΫηεසͷඪ४ภࠩ"܈ ը ૾্ Ͱ͔Βʹɺ#܈ ը ૾Լ Ͱ͔ΒʹมԽɻ
ख๏ద༻ޙʹεϧʔϓοτ͕҆ఆ͍ͯ͠Δ ͜ͱ͕Θ͔Δɻ ˞"܈ͷ૿ՃԼݶӡ༻ͱͳͬͨ࣌ؒଳ ͷ͋ͨΓͷεϧʔϓοτ૿ՃʹΑΔ ͷͱߟ͑ΒΕΔ
ݚڀใࠂΠϯλʔωοτͱӡ༻ٕज़ʢIOTʣ 38 ࡾ ༔հ, দຊ ྄հ, ྗ ݈࣍, ܀ྛ ݈ଠ,
ΞΫηεස༧ ଌʹجͮ͘ԾαʔόͷܭըతΦʔτεέʔϦϯά, ݚڀใࠂ Πϯλʔωοτͱӡ༻ٕज़ʢIOTʣ, Vol.2017-IOT-38(13), pp.1-8, June 2017 http://id.nii.ac.jp/1001/00182375/
ݚڀ݁ՌͷαʔϏεಋೖ
1. ج൫ԽɺAPIԽʹΑΔݚڀڥͱαʔϏεͷγʔϜϨεͳ࿈ܞ 2. ίʔυཧɺόʔδϣϯཧʹΑΔݚڀͱӡ༻ͷฒߦ 40 ݚڀ݁ՌͷαʔϏεಋೖ ݚڀ݁ՌͷαʔϏεಋೖଈ͔࣌ͭશࣾల։Ͱ͖Δ͜ͱ͕·͍͠
1. ϩάDBͳͲͷαʔϏεࢿ࢈ͱ࿈ܞͰ͖Δ 2. ൺֱత༰қʹϞσϧͷߏஙͱࢼߦ͕ߦ͑Δ 3. ֶश݁ՌΛར༻͢ΔͨΊͷखஈͱͯ͠APIΛఏڙ͢Δ 1. ֶश݁ՌͷϩʔΧϧར༻͕Ͱ͖Δͱͳ͓Α͍ 4. ্هͷΈ͕εέʔϥϒϧͰ͋Δ͜ͱ
41 ػցֶशج൫ʹٻΊΒΕΔͷ
1. ೖग़ྗ͕Cloud Storageܦ༝ 2. ܇࿅ϓϩάϥϜͱͯ͠TensorFlowΛ࠾༻ 3. ΦϯϥΠϯ༧ଌαʔϏεʹΑΓϞσϧͷAPIԽ 1. ֶश݁ՌCloud StorageʹอଘɺϩʔΧϧͰͷར༻
4. ࢄܕͷτϨʔχϯάΠϯϑϥͱෛՙࢄαʔϏεͱͷ࿈ܞ 42 Google Cloud ML EngineͰߟ͑Δ ※ ݕ౼ʹؔ͢Δৄࡉ: http://rand.pepabo.com/article/2017/01/18/pepabo-ml-platform-and-workflow/
StarChart StarChart is a tool to manage Google Cloud Machine
Learning training programs and model versions https://github.com/monochromegane/starchart
• όʔδϣϯཧͷସʹ͓͚Δஅج४ͱͳΔ܇࿅ϓϩάϥϜɺύϥϝλɺδϣ ϒใ·ͰؚΊͯίʔυͰཧ • ֶश࣌ͷδϣϒIDCloud Storageͷύεɺόʔδϣϯʹඥͮ͘ύϥϝλใ ͷऔಘʹ·ͭΘΔCloud MLͷࡉ͔ͳ͍উखվળ 44 StarChart
·ͱΊ
• ϖύݚͱαʔϏεͰେ͖ͳ୯ҐͰͷ՝ͷڞ༗Λܧଓ͢Δ • ݚڀ݁ՌͷಋೖͱϑΟʔυόοΫΛߴʹ͢Δ͜ͱ͕ࣄۀͷࠩผԽʹͭͳ͕Δ • ϖύݚݚڀ݁ՌΛଈ͔࣌ͭશࣾͰར༻Ͱ͖Δج൫Λ • αʔϏεಋೖɺӡ༻࣌ͷΤϯδχΞؒ࿈ܞΛ 46 ·ͱΊ
͍·ΑΓʮΈΜͳʯͷ෯Λ͛ɺͦͷʮΈΜͳʯʹରͯؔ͠৺Λ͍࣋ͬͯ͘ One Love ❝ http://blog.kentarok.org/entry/2016/12/21/002537
ݚڀһɺੵۃతʹืूதʂ http://rand.pepabo.com/
• ϖύϘݚڀॴ • http://rand.pepabo.com/ • ಛநग़ثͷֶशͱߪങཤྺΛඞཁͱ͠ͳ͍ྨࣅը૾ʹΑΔؔ࿈ݕࡧγεςϜ • http://rand.pepabo.com/article/2017/06/19/iot37-miyakey/ • ΞΫηεස༧ଌʹجͮ͘ԾαʔόͷܭըతΦʔτεέʔϦϯά
• http://rand.pepabo.com/article/2017/06/28/iot38-miyakey/ • Google Cloud ML Λ༻͍ͨػցֶशج൫ͷߏஙͱӡ༻ • https://speakerdeck.com/monochromegane/pepabo-ml-infrastructure-starchart • 2017ͷςʔϚ: One Love • http://blog.kentarok.org/entry/2016/12/21/002537 48 ࢀߟ