Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DeepLearningBook 9.5-9.7
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
mtjuney
February 16, 2018
Technology
0
44
DeepLearningBook 9.5-9.7
mtjuney
February 16, 2018
Tweet
Share
More Decks by mtjuney
See All by mtjuney
DeepLearningBook 9.3-9.4
mtjuney
0
47
Other Decks in Technology
See All in Technology
OCI Database Management サービス詳細
oracle4engineer
PRO
1
7.4k
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
4
1.3k
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
Codex 5.3 と Opus 4.6 にコーポレートサイトを作らせてみた / Codex 5.3 vs Opus 4.6
ama_ch
0
150
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.3k
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
量子クラウドサービスの裏側 〜Deep Dive into OQTOPUS〜
oqtopus
0
110
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.5k
Frontier Agents (Kiro autonomous agent / AWS Security Agent / AWS DevOps Agent) の紹介
msysh
3
170
外部キー制約の知っておいて欲しいこと - RDBMSを正しく使うために必要なこと / FOREIGN KEY Night
soudai
PRO
12
5.4k
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
240
超初心者からでも大丈夫!オープンソース半導体の楽しみ方〜今こそ!オレオレチップをつくろう〜
keropiyo
0
110
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Heart Work Chapter 1 - Part 1
lfama
PRO
5
35k
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Reflections from 52 weeks, 52 projects
jeffersonlam
356
21k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
120
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
Designing for Performance
lara
610
70k
A better future with KSS
kneath
240
18k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
Fireside Chat
paigeccino
41
3.8k
Transcript
Deep Learning Book 9.5-9.7 mtjuney
9.5 Variants of the Basic Convolution Function
w ը૾֊ςϯιϧͱͯ͠ѻ͏ w νϟωϧYߦYྻ w ্࣮ͨͩ͠ϛχόον୯ҐͰॲཧ͢ΔͷͰ֊ςϯιϧ w όονYνϟωϧYߦYྻ 9.5 Variants
of the Basic Convolution Function
w Nνϟωϧͷೖྗ͔ΒOνϟωϧͷग़ྗΛಘΔͷʹ NYOݸͷ࣍ݩͷΈࠐΈΧʔωϧ͕ඞཁ w ೖྗग़ྗͷνϟωϧ୯ҐͰશ݁߹ w ΤοδҰ͕ͭ࣍ݩΈࠐΈΧʔωϧҰͭʹ૬ w ؒͷΧʔωϧશମ <ग़ྗνϟωϧYೖྗνϟωϧYߦYྻ>ͷ֊ςϯιϧͰද͞ΕΔ
9.5 Variants of the Basic Convolution Function
ετϥΠυ
w ετϥΠυΈࠐΈΧʔωϧΛಈ͔͢෯ w ετϥΠυΛҎ্ʹ͢Δ͜ͱͰग़ྗΛμϯαϯϓϦϯά͢Δ
w ετϥΠυΈࠐΈΧʔωϧΛಈ͔͢෯ w ετϥΠυΛҎ্ʹ͢Δ͜ͱͰग़ྗΛμϯαϯϓϦϯά͢Δ ετϥΠυ
ετϥΠυ : 2
w ΈࠐΈΛߦ͏ʹ<ΧʔωϧͷαΠζ>͚ͩը૾αΠζॖΉ w ͦΕΛ͙ͨΊʹQBEEJOHΛߦ͏ w ΈࠐΈΛߦ͏લʹɺը૾ͷपΓʹԿΒ͔ͷΛ͚͢ w ಛʹΛ͚͢߹[FSPQBEEJOH w QBEEJOHͷઃఆࡾ௨Γ͋Δ
w QBEEJOHΛΘͳ͍ WBMJEDPOWPMVUJPO w ग़ྗ͕ೖྗͱಉ͡ʹͳΔΑ͏QBEEJOHΛߦ͏ TBNFDPOWPMVUJPO w ೖྗͷશϐΫηϧ͕ಉ͡ճ͚ͩΧʔωϧʹ͔͔ΔΑ͏ QBEEJOHΛߦ͏ GVMMDPOWPMVUJPO padding
padding
w ૄ݁߹Ͱ͋Δ͕ɺॏΈڞ༗͠ͳ͍ΈࠐΈ VOTIBSFEDPOWPMVUJPO Λߦ͏ w ॴʹΑͬͯҟͳΔॏΈΛ༻͍Δ w ʮͲͷҐஔͷΧʔωϧ͔ʯͷใ͕ඞཁʹͳΔͨΊ ͭͷͷΧʔωϧશମ֊ςϯιϧͰද͞ΕΔ w
ී௨ͷΈࠐΈը૾શମ͔Βಉ͡ಛΛநग़͢Δ w MPDBMMZDPOOFDUFEMBZFST ը૾ͷҰ෦͔ΒͷΈಛΛநग़Ͱ͖Εྑ͍߹ʹ༗ޮ locally connected layers
w ೖྗग़ྗͷνϟωϧؒΛશ݁߹ͤͣɺ ͍͔ͭ͘ͷνϟωϧू߹ʹׂ w ܭࢉྔɾϝϞϦ༻ྔͷݮ locally connected layers
w ී௨ͷࠐΈͱ VOTIBSFEDPOWPMVUJPOͷંҊ w શ͘ॏΈڞ༗Λ͠ͳ͍ͷͰͳ͘ɺ पظతʹڞ༗͢Δ Tiled convolution
ΈࠐΈؔ ΈࠐΈͷٯ ޡࠩؔ ্ͷ͔Βड͚औΔޡࠩ ,Χʔωϧ 7ೖྗ ;ग़ྗ TετϥΠυ Χʔωϧͷޯ
ΈࠐΈͷٯ ೖྗͷνϟωϧK͔Βग़ྗͷνϟωϧJͷࠐΈΧʔωϧͷɺ LߦMྻͷॏΈͷޯΛٻΊ͍ͨ Χʔωϧͷޯ ֶशͷͨΊʹΧʔωϧͷޯ͕ඞཁ
ΈࠐΈͷٯ gi,j,k,l = @ @Ki,j,k,l J = X m,n @Zi,m,n
@Ki,j,k,l @J @Zi,m,n = X m,n Vj,(m 1)⇥s+k,(n 1)⇥s+l Gi,m,n
ΈࠐΈͷٯ Լͷ͢ޯ
όΠΞε߲ͷѻ͍ w ௨ৗͷ//ͱಉ༷ʹɺඇઢܗؔͷద༻લʹόΠΞεΛ͢ w -PDBMMZDPOOFDUFEMBZFSTͷ߹ w ֤Ϣχοτ͝ͱʹಠཱͨ͠όΠΞε w 5JMFEDPOWPMVUJPOͷ߹ w
Χʔωϧͱಉ͡पظͰόΠΞεΛڞ༗ w ௨ৗͷΈࠐΈ w νϟωϧͷதͰڞ༗ w ͨͩ͠ग़ྗ͕ݻఆαΠζͷ߹ɺݸผʹֶश͢Δ͜ͱͰ͖Δ w ڞ༗͢ΔΑΓܭࢉޮམͪΔ w [FSPQBEEJOH෦ʹ͔͔Δ෦ͷόΠΞεΛେ͖͘͢ΔͳͲ ౷ܭྔͷҧ͍Λमਖ਼Ͱ͖Δ
9.6 Structured Outputs
w $//Ͱ୯Ұͷ༧ଌͰͳ͘ ը૾ͷΑ͏ͳߏσʔλΛग़ྗ͢Δ͜ͱͰ͖Δ w ྫ͑4FNBOUJD4FHNFOUBUJPO w ֤ϐΫηϧʹΫϥεͷ༧ଌ͕ଘࡏ͢ΔϥϕϧάϦου w ͨͩ͠ී௨ɺϓʔϦϯάͰग़ྗμϯαϯϓϦϯά͞Ε͍ͯΔ w
ରࡦ w ϓʔϦϯά͠ͳ͍ w ετϥΠυͷϓʔϦϯάΛߦ͏ w ղ૾ͷ͍ϥϕϧάϦουΛग़ྗ w ॻ͍ͯͳ͍ μϯαϯϓϦϯάޙɺEFDPOWPMVUJPO ߏग़ྗ
w ग़ྗͨ͠ϥϕϧάϦουɺ ۙͷϐΫηϧؒͷ૬ޓ࡞༻Λར༻ͯ͠վળͰ͖Δ w 3//ͷΑ͏ͳߏΛ༻͍ͯɺ$//ͷΈͰߦ͏ ߏग़ྗ
9.7 Data Types
w $//ೖྗͷۭؒͷେ͖͕͞ҟͳΔ߹Ͱద༻Մೳ w ը૾ͳΒɺߴ͞ͱ෯͕ҟͳΔ߹ w ԻͳΒɺԻͷ͕͞ҟͳΔ߹ w ͜ΕΒҰൠతͳ//Ͱద༻Ͱ͖ͳ͍ w ࣮ࡍʹͦͷΑ͏ͳσʔλΛॲཧ͢Δ߹
w ग़ྗ͕Մมʢೖྗͱಉ͡ʣ w Ͱड़ͨํ๏ w ग़ྗ͕ݻఆ w ՄมαΠζͷϓʔϦϯάͰݻఆʹམͱ͠ࠐΉ w (MPCBM"WFSBHF1PPMJOHͳͲ Data Types
w ՄมͷσʔλʹରԠ͍ͯͯ͠ɺ ҟͳΔछྨͷσʔλΛՃͯ͠ΈࠐΉͷҙຯ͕ͳ͍ w ͋͘·Ͱҙຯ͕͋Δͷ ʮಉ͡छྨͷσʔλͰɺσʔλྔ͕ҟͳΔʯ߹͚ͩ Data Types