Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DeepLearningBook 9.5-9.7
Search
mtjuney
February 16, 2018
Technology
0
44
DeepLearningBook 9.5-9.7
mtjuney
February 16, 2018
Tweet
Share
More Decks by mtjuney
See All by mtjuney
DeepLearningBook 9.3-9.4
mtjuney
0
47
Other Decks in Technology
See All in Technology
【CEDEC2025】『ウマ娘 プリティーダービー』における映像制作のさらなる高品質化へ!~ 豊富な素材出力と制作フローの改善を実現するツールについて~
cygames
PRO
0
130
TypeScript 上達の道
ysknsid25
23
5.1k
人と生成AIの協調意思決定/Co‑decision making by people and generative AI
moriyuya
0
230
Unson OS|48時間で「売れるか」を判定する AI 市場検証プラットフォーム
unson
0
160
【CEDEC2025】『Shadowverse: Worlds Beyond』二度目のDCG開発でゲームをリデザインする~遊びやすさと競技性の両立~
cygames
PRO
1
180
Vision Language Modelと自動運転AIの最前線_20250730
yuyamaguchi
2
940
Gemini in Android Studio - Google I/O Bangkok '25
akexorcist
0
110
P2P ではじめる WebRTC のつまづきどころ
tnoho
1
290
AWS表彰プログラムとキャリアについて
naoki_0531
1
150
VLMサービスを用いた請求書データ化検証 / SaaSxML_Session_1
sansan_randd
0
160
データエンジニアがクラシルでやりたいことの現在地
gappy50
3
800
robocopy の怖い話/scary-story-about-robocopy
emiki
0
420
Featured
See All Featured
RailsConf 2023
tenderlove
30
1.2k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Building Adaptive Systems
keathley
43
2.7k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Scaling GitHub
holman
461
140k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Gamification - CAS2011
davidbonilla
81
5.4k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
182
54k
Code Reviewing Like a Champion
maltzj
524
40k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.6k
Transcript
Deep Learning Book 9.5-9.7 mtjuney
9.5 Variants of the Basic Convolution Function
w ը૾֊ςϯιϧͱͯ͠ѻ͏ w νϟωϧYߦYྻ w ্࣮ͨͩ͠ϛχόον୯ҐͰॲཧ͢ΔͷͰ֊ςϯιϧ w όονYνϟωϧYߦYྻ 9.5 Variants
of the Basic Convolution Function
w Nνϟωϧͷೖྗ͔ΒOνϟωϧͷग़ྗΛಘΔͷʹ NYOݸͷ࣍ݩͷΈࠐΈΧʔωϧ͕ඞཁ w ೖྗग़ྗͷνϟωϧ୯ҐͰશ݁߹ w ΤοδҰ͕ͭ࣍ݩΈࠐΈΧʔωϧҰͭʹ૬ w ؒͷΧʔωϧશମ <ग़ྗνϟωϧYೖྗνϟωϧYߦYྻ>ͷ֊ςϯιϧͰද͞ΕΔ
9.5 Variants of the Basic Convolution Function
ετϥΠυ
w ετϥΠυΈࠐΈΧʔωϧΛಈ͔͢෯ w ετϥΠυΛҎ্ʹ͢Δ͜ͱͰग़ྗΛμϯαϯϓϦϯά͢Δ
w ετϥΠυΈࠐΈΧʔωϧΛಈ͔͢෯ w ετϥΠυΛҎ্ʹ͢Δ͜ͱͰग़ྗΛμϯαϯϓϦϯά͢Δ ετϥΠυ
ετϥΠυ : 2
w ΈࠐΈΛߦ͏ʹ<ΧʔωϧͷαΠζ>͚ͩը૾αΠζॖΉ w ͦΕΛ͙ͨΊʹQBEEJOHΛߦ͏ w ΈࠐΈΛߦ͏લʹɺը૾ͷपΓʹԿΒ͔ͷΛ͚͢ w ಛʹΛ͚͢߹[FSPQBEEJOH w QBEEJOHͷઃఆࡾ௨Γ͋Δ
w QBEEJOHΛΘͳ͍ WBMJEDPOWPMVUJPO w ग़ྗ͕ೖྗͱಉ͡ʹͳΔΑ͏QBEEJOHΛߦ͏ TBNFDPOWPMVUJPO w ೖྗͷશϐΫηϧ͕ಉ͡ճ͚ͩΧʔωϧʹ͔͔ΔΑ͏ QBEEJOHΛߦ͏ GVMMDPOWPMVUJPO padding
padding
w ૄ݁߹Ͱ͋Δ͕ɺॏΈڞ༗͠ͳ͍ΈࠐΈ VOTIBSFEDPOWPMVUJPO Λߦ͏ w ॴʹΑͬͯҟͳΔॏΈΛ༻͍Δ w ʮͲͷҐஔͷΧʔωϧ͔ʯͷใ͕ඞཁʹͳΔͨΊ ͭͷͷΧʔωϧશମ֊ςϯιϧͰද͞ΕΔ w
ී௨ͷΈࠐΈը૾શମ͔Βಉ͡ಛΛநग़͢Δ w MPDBMMZDPOOFDUFEMBZFST ը૾ͷҰ෦͔ΒͷΈಛΛநग़Ͱ͖Εྑ͍߹ʹ༗ޮ locally connected layers
w ೖྗग़ྗͷνϟωϧؒΛશ݁߹ͤͣɺ ͍͔ͭ͘ͷνϟωϧू߹ʹׂ w ܭࢉྔɾϝϞϦ༻ྔͷݮ locally connected layers
w ී௨ͷࠐΈͱ VOTIBSFEDPOWPMVUJPOͷંҊ w શ͘ॏΈڞ༗Λ͠ͳ͍ͷͰͳ͘ɺ पظతʹڞ༗͢Δ Tiled convolution
ΈࠐΈؔ ΈࠐΈͷٯ ޡࠩؔ ্ͷ͔Βड͚औΔޡࠩ ,Χʔωϧ 7ೖྗ ;ग़ྗ TετϥΠυ Χʔωϧͷޯ
ΈࠐΈͷٯ ೖྗͷνϟωϧK͔Βग़ྗͷνϟωϧJͷࠐΈΧʔωϧͷɺ LߦMྻͷॏΈͷޯΛٻΊ͍ͨ Χʔωϧͷޯ ֶशͷͨΊʹΧʔωϧͷޯ͕ඞཁ
ΈࠐΈͷٯ gi,j,k,l = @ @Ki,j,k,l J = X m,n @Zi,m,n
@Ki,j,k,l @J @Zi,m,n = X m,n Vj,(m 1)⇥s+k,(n 1)⇥s+l Gi,m,n
ΈࠐΈͷٯ Լͷ͢ޯ
όΠΞε߲ͷѻ͍ w ௨ৗͷ//ͱಉ༷ʹɺඇઢܗؔͷద༻લʹόΠΞεΛ͢ w -PDBMMZDPOOFDUFEMBZFSTͷ߹ w ֤Ϣχοτ͝ͱʹಠཱͨ͠όΠΞε w 5JMFEDPOWPMVUJPOͷ߹ w
Χʔωϧͱಉ͡पظͰόΠΞεΛڞ༗ w ௨ৗͷΈࠐΈ w νϟωϧͷதͰڞ༗ w ͨͩ͠ग़ྗ͕ݻఆαΠζͷ߹ɺݸผʹֶश͢Δ͜ͱͰ͖Δ w ڞ༗͢ΔΑΓܭࢉޮམͪΔ w [FSPQBEEJOH෦ʹ͔͔Δ෦ͷόΠΞεΛେ͖͘͢ΔͳͲ ౷ܭྔͷҧ͍Λमਖ਼Ͱ͖Δ
9.6 Structured Outputs
w $//Ͱ୯Ұͷ༧ଌͰͳ͘ ը૾ͷΑ͏ͳߏσʔλΛग़ྗ͢Δ͜ͱͰ͖Δ w ྫ͑4FNBOUJD4FHNFOUBUJPO w ֤ϐΫηϧʹΫϥεͷ༧ଌ͕ଘࡏ͢ΔϥϕϧάϦου w ͨͩ͠ී௨ɺϓʔϦϯάͰग़ྗμϯαϯϓϦϯά͞Ε͍ͯΔ w
ରࡦ w ϓʔϦϯά͠ͳ͍ w ετϥΠυͷϓʔϦϯάΛߦ͏ w ղ૾ͷ͍ϥϕϧάϦουΛग़ྗ w ॻ͍ͯͳ͍ μϯαϯϓϦϯάޙɺEFDPOWPMVUJPO ߏग़ྗ
w ग़ྗͨ͠ϥϕϧάϦουɺ ۙͷϐΫηϧؒͷ૬ޓ࡞༻Λར༻ͯ͠վળͰ͖Δ w 3//ͷΑ͏ͳߏΛ༻͍ͯɺ$//ͷΈͰߦ͏ ߏग़ྗ
9.7 Data Types
w $//ೖྗͷۭؒͷେ͖͕͞ҟͳΔ߹Ͱద༻Մೳ w ը૾ͳΒɺߴ͞ͱ෯͕ҟͳΔ߹ w ԻͳΒɺԻͷ͕͞ҟͳΔ߹ w ͜ΕΒҰൠతͳ//Ͱద༻Ͱ͖ͳ͍ w ࣮ࡍʹͦͷΑ͏ͳσʔλΛॲཧ͢Δ߹
w ग़ྗ͕Մมʢೖྗͱಉ͡ʣ w Ͱड़ͨํ๏ w ग़ྗ͕ݻఆ w ՄมαΠζͷϓʔϦϯάͰݻఆʹམͱ͠ࠐΉ w (MPCBM"WFSBHF1PPMJOHͳͲ Data Types
w ՄมͷσʔλʹରԠ͍ͯͯ͠ɺ ҟͳΔछྨͷσʔλΛՃͯ͠ΈࠐΉͷҙຯ͕ͳ͍ w ͋͘·Ͱҙຯ͕͋Δͷ ʮಉ͡छྨͷσʔλͰɺσʔλྔ͕ҟͳΔʯ߹͚ͩ Data Types