Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DeepLearningBook 9.5-9.7
Search
mtjuney
February 16, 2018
Technology
0
44
DeepLearningBook 9.5-9.7
mtjuney
February 16, 2018
Tweet
Share
More Decks by mtjuney
See All by mtjuney
DeepLearningBook 9.3-9.4
mtjuney
0
47
Other Decks in Technology
See All in Technology
Autonomous Database - Dedicated 技術詳細 / adb-d_technical_detail_jp
oracle4engineer
PRO
4
10k
5分でカオスエンジニアリングを分かった気になろう
pandayumi
0
260
AWSを利用する上で知っておきたい名前解決のはなし(10分版)
nagisa53
10
3.2k
DroidKaigi 2025 Androidエンジニアとしてのキャリア
mhidaka
2
380
サラリーマンの小遣いで作るtoCサービス - Cloudflare Workersでスケールする開発戦略
shinaps
2
470
Snowflake×dbtを用いたテレシーのデータ基盤のこれまでとこれから
sagara
0
120
スマートファクトリーの第一歩 〜AWSマネージドサービスで 実現する予知保全と生成AI活用まで
ganota
2
310
現場で効くClaude Code ─ 最新動向と企業導入
takaakikakei
1
260
【NoMapsTECH 2025】AI Edge Computing Workshop
akit37
0
230
いま注目のAIエージェントを作ってみよう
supermarimobros
0
350
Aurora DSQLはサーバーレスアーキテクチャの常識を変えるのか
iwatatomoya
1
1.2k
Unlocking the Power of AI Agents with LINE Bot MCP Server
linedevth
0
110
Featured
See All Featured
Practical Orchestrator
shlominoach
190
11k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
The Pragmatic Product Professional
lauravandoore
36
6.9k
Building an army of robots
kneath
306
46k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
GraphQLとの向き合い方2022年版
quramy
49
14k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.1k
The Language of Interfaces
destraynor
161
25k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Fireside Chat
paigeccino
39
3.6k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Transcript
Deep Learning Book 9.5-9.7 mtjuney
9.5 Variants of the Basic Convolution Function
w ը૾֊ςϯιϧͱͯ͠ѻ͏ w νϟωϧYߦYྻ w ্࣮ͨͩ͠ϛχόον୯ҐͰॲཧ͢ΔͷͰ֊ςϯιϧ w όονYνϟωϧYߦYྻ 9.5 Variants
of the Basic Convolution Function
w Nνϟωϧͷೖྗ͔ΒOνϟωϧͷग़ྗΛಘΔͷʹ NYOݸͷ࣍ݩͷΈࠐΈΧʔωϧ͕ඞཁ w ೖྗग़ྗͷνϟωϧ୯ҐͰશ݁߹ w ΤοδҰ͕ͭ࣍ݩΈࠐΈΧʔωϧҰͭʹ૬ w ؒͷΧʔωϧશମ <ग़ྗνϟωϧYೖྗνϟωϧYߦYྻ>ͷ֊ςϯιϧͰද͞ΕΔ
9.5 Variants of the Basic Convolution Function
ετϥΠυ
w ετϥΠυΈࠐΈΧʔωϧΛಈ͔͢෯ w ετϥΠυΛҎ্ʹ͢Δ͜ͱͰग़ྗΛμϯαϯϓϦϯά͢Δ
w ετϥΠυΈࠐΈΧʔωϧΛಈ͔͢෯ w ετϥΠυΛҎ্ʹ͢Δ͜ͱͰग़ྗΛμϯαϯϓϦϯά͢Δ ετϥΠυ
ετϥΠυ : 2
w ΈࠐΈΛߦ͏ʹ<ΧʔωϧͷαΠζ>͚ͩը૾αΠζॖΉ w ͦΕΛ͙ͨΊʹQBEEJOHΛߦ͏ w ΈࠐΈΛߦ͏લʹɺը૾ͷपΓʹԿΒ͔ͷΛ͚͢ w ಛʹΛ͚͢߹[FSPQBEEJOH w QBEEJOHͷઃఆࡾ௨Γ͋Δ
w QBEEJOHΛΘͳ͍ WBMJEDPOWPMVUJPO w ग़ྗ͕ೖྗͱಉ͡ʹͳΔΑ͏QBEEJOHΛߦ͏ TBNFDPOWPMVUJPO w ೖྗͷશϐΫηϧ͕ಉ͡ճ͚ͩΧʔωϧʹ͔͔ΔΑ͏ QBEEJOHΛߦ͏ GVMMDPOWPMVUJPO padding
padding
w ૄ݁߹Ͱ͋Δ͕ɺॏΈڞ༗͠ͳ͍ΈࠐΈ VOTIBSFEDPOWPMVUJPO Λߦ͏ w ॴʹΑͬͯҟͳΔॏΈΛ༻͍Δ w ʮͲͷҐஔͷΧʔωϧ͔ʯͷใ͕ඞཁʹͳΔͨΊ ͭͷͷΧʔωϧશମ֊ςϯιϧͰද͞ΕΔ w
ී௨ͷΈࠐΈը૾શମ͔Βಉ͡ಛΛநग़͢Δ w MPDBMMZDPOOFDUFEMBZFST ը૾ͷҰ෦͔ΒͷΈಛΛநग़Ͱ͖Εྑ͍߹ʹ༗ޮ locally connected layers
w ೖྗग़ྗͷνϟωϧؒΛશ݁߹ͤͣɺ ͍͔ͭ͘ͷνϟωϧू߹ʹׂ w ܭࢉྔɾϝϞϦ༻ྔͷݮ locally connected layers
w ී௨ͷࠐΈͱ VOTIBSFEDPOWPMVUJPOͷંҊ w શ͘ॏΈڞ༗Λ͠ͳ͍ͷͰͳ͘ɺ पظతʹڞ༗͢Δ Tiled convolution
ΈࠐΈؔ ΈࠐΈͷٯ ޡࠩؔ ্ͷ͔Βड͚औΔޡࠩ ,Χʔωϧ 7ೖྗ ;ग़ྗ TετϥΠυ Χʔωϧͷޯ
ΈࠐΈͷٯ ೖྗͷνϟωϧK͔Βग़ྗͷνϟωϧJͷࠐΈΧʔωϧͷɺ LߦMྻͷॏΈͷޯΛٻΊ͍ͨ Χʔωϧͷޯ ֶशͷͨΊʹΧʔωϧͷޯ͕ඞཁ
ΈࠐΈͷٯ gi,j,k,l = @ @Ki,j,k,l J = X m,n @Zi,m,n
@Ki,j,k,l @J @Zi,m,n = X m,n Vj,(m 1)⇥s+k,(n 1)⇥s+l Gi,m,n
ΈࠐΈͷٯ Լͷ͢ޯ
όΠΞε߲ͷѻ͍ w ௨ৗͷ//ͱಉ༷ʹɺඇઢܗؔͷద༻લʹόΠΞεΛ͢ w -PDBMMZDPOOFDUFEMBZFSTͷ߹ w ֤Ϣχοτ͝ͱʹಠཱͨ͠όΠΞε w 5JMFEDPOWPMVUJPOͷ߹ w
Χʔωϧͱಉ͡पظͰόΠΞεΛڞ༗ w ௨ৗͷΈࠐΈ w νϟωϧͷதͰڞ༗ w ͨͩ͠ग़ྗ͕ݻఆαΠζͷ߹ɺݸผʹֶश͢Δ͜ͱͰ͖Δ w ڞ༗͢ΔΑΓܭࢉޮམͪΔ w [FSPQBEEJOH෦ʹ͔͔Δ෦ͷόΠΞεΛେ͖͘͢ΔͳͲ ౷ܭྔͷҧ͍Λमਖ਼Ͱ͖Δ
9.6 Structured Outputs
w $//Ͱ୯Ұͷ༧ଌͰͳ͘ ը૾ͷΑ͏ͳߏσʔλΛग़ྗ͢Δ͜ͱͰ͖Δ w ྫ͑4FNBOUJD4FHNFOUBUJPO w ֤ϐΫηϧʹΫϥεͷ༧ଌ͕ଘࡏ͢ΔϥϕϧάϦου w ͨͩ͠ී௨ɺϓʔϦϯάͰग़ྗμϯαϯϓϦϯά͞Ε͍ͯΔ w
ରࡦ w ϓʔϦϯά͠ͳ͍ w ετϥΠυͷϓʔϦϯάΛߦ͏ w ղ૾ͷ͍ϥϕϧάϦουΛग़ྗ w ॻ͍ͯͳ͍ μϯαϯϓϦϯάޙɺEFDPOWPMVUJPO ߏग़ྗ
w ग़ྗͨ͠ϥϕϧάϦουɺ ۙͷϐΫηϧؒͷ૬ޓ࡞༻Λར༻ͯ͠վળͰ͖Δ w 3//ͷΑ͏ͳߏΛ༻͍ͯɺ$//ͷΈͰߦ͏ ߏग़ྗ
9.7 Data Types
w $//ೖྗͷۭؒͷେ͖͕͞ҟͳΔ߹Ͱద༻Մೳ w ը૾ͳΒɺߴ͞ͱ෯͕ҟͳΔ߹ w ԻͳΒɺԻͷ͕͞ҟͳΔ߹ w ͜ΕΒҰൠతͳ//Ͱద༻Ͱ͖ͳ͍ w ࣮ࡍʹͦͷΑ͏ͳσʔλΛॲཧ͢Δ߹
w ग़ྗ͕Մมʢೖྗͱಉ͡ʣ w Ͱड़ͨํ๏ w ग़ྗ͕ݻఆ w ՄมαΠζͷϓʔϦϯάͰݻఆʹམͱ͠ࠐΉ w (MPCBM"WFSBHF1PPMJOHͳͲ Data Types
w ՄมͷσʔλʹରԠ͍ͯͯ͠ɺ ҟͳΔछྨͷσʔλΛՃͯ͠ΈࠐΉͷҙຯ͕ͳ͍ w ͋͘·Ͱҙຯ͕͋Δͷ ʮಉ͡छྨͷσʔλͰɺσʔλྔ͕ҟͳΔʯ߹͚ͩ Data Types