Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
UZOUにおけるAerospike
Search
muroon
June 08, 2023
Technology
0
200
UZOUにおけるAerospike
2023.6.7 Aerospike セミナーにおける登壇資料
muroon
June 08, 2023
Tweet
Share
More Decks by muroon
See All by muroon
GCにおけるパフォーマンス改善
muroon
0
670
go-athenaの大量データ取得を速くした方法
muroon
1
320
Goの静的解析を使用してAPI Doc Linterをつくる
muroon
0
54
Cloude Spannerの主キーの設計
muroon
0
34
Other Decks in Technology
See All in Technology
自分だけの仮想クラスタを高速かつ効率的に作る kubefork
donkomura
0
110
Introduction to OpenSearch Project - Search Engineering Tech Talk 2025 Winter
tkykenmt
2
160
リクルートのエンジニア組織を下支えする 新卒の育成の仕組み
recruitengineers
PRO
1
140
AIエージェント入門
minorun365
PRO
32
19k
事業を差別化する技術を生み出す技術
pyama86
2
440
Amazon Q Developerの無料利用枠を使い倒してHello worldを表示させよう!
nrinetcom
PRO
2
120
DevinでAI AWSエンジニア製造計画 序章 〜CDKを添えて〜/devin-load-to-aws-engineer
tomoki10
0
190
AWS Well-Architected Frameworkで学ぶAmazon ECSのセキュリティ対策
umekou
2
150
いまからでも遅くない!コンテナでWebアプリを動かしてみよう!コンテナハンズオン編
nomu
0
170
Aurora PostgreSQLがCloudWatch Logsに 出力するログの課金を削減してみる #jawsdays2025
non97
1
230
EMConf JP 2025 懇親会LT / EMConf JP 2025 social gathering
sugamasao
2
200
プルリクエストレビューを終わらせるためのチーム体制 / The Team for Completing Pull Request Reviews
nekonenene
1
240
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
94
13k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
Fireside Chat
paigeccino
35
3.2k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.8k
Gamification - CAS2011
davidbonilla
80
5.2k
Stop Working from a Prison Cell
hatefulcrawdad
268
20k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
How to train your dragon (web standard)
notwaldorf
91
5.9k
Designing for humans not robots
tammielis
250
25k
Mobile First: as difficult as doing things right
swwweet
223
9.5k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Thoughts on Productivity
jonyablonski
69
4.5k
Transcript
UZOUにおけるAerospike
自己紹介 Toyohito Murooka 室岡 豊人 株式会社SpeeeにてUZOUという広告配信システムの開発に従事 https://twitter.com/muroon01 https://github.com/muroon
UZOUとは • メディアに関連する記事や広告を配信するネイティブアド配信プラットフォーム • 2016年からサービスを開始しており7年目のプロダクト(Aerospikeの使用は2017年〜)
UZOの全体構成図
配信サーバーからのアクセス • 事前にデータ更新しておいてランタイム処 理のリソースアクセスはオンメモリと KVSへ のReadのみ ◦ オンメモリ(DBから定期的に取得) ◦ KVS(都度KVSから取得可能)
• Write処理は非同期で実施
Aerospikeに保存している主な内容 • コンバージョン情報 • 広告・記事などの配信候補の情報 • 広告に関する情報(予算・CPCなど) • 配信制御部分 なぜオンメモリではないのか?
• 上記の情報は更新後にすぐに取得できるように配信サーバーから都度取得する必要があるためKVSを使用 • オンメモリデータは一定時間間隔でDBから取得することになる(数百万TPS環境下では差分が大きい)
必要な性能と役割 性能 • read, writeともに数百万TPS以上 UZOUにおけるAerospikeの役割 • クラスタ型KVS • Data型としてはSetsのみ
なぜAerospike? リリース当初はDynamoDBを使用していたが、下記の問題点が発生 • DynamoDBを使用していて、Write性能、Read性能が低いことにより、UZOUのデータ量だとコスト(金銭的、処理的)が高く なってしまう • 局所的にスループット出したい場面で辛くなってきている ◦ DynamoDB Accelerator
(DAX)によりスループットの上では改善することも可能 ◦ ただしコストパフォーマンスに難あり • UZOUのデータ構造を扱うにはクエリの柔軟性が低い ◦ キーベースで取り出すのが厳しい ◦ UZOUのアプリデータのつくり上ではupdateしづらい ◦ 集計がない ◦ 10GBの隠れパーティション ▪ パーティションサイズを10GB以内にしなければならない • キーに対してアプリケーション側で手を加える必要がある • VPCの外にあるので、ネットワークレイテンシーの影響を受けやすい • プロトコルがhttp(もしくはhttps)のためコストが高い ※注意) • あくまでUZOUのデータ構造を扱う上での見解です • 2017年当時の見解ですので変わっている可能性があります
別のKVSを検討 AerospikeかRedis Clusterを検討 Aerospike Redis Cluster スケーリング 自動フェイルオーバー、自動データバランシングなどの機能を 持っており、ホリゾンタルスケーリングが容易。また、 Aerospikeは
データをメモリとSSDの両方に保存できるため、大容量のデータ を扱うことが可能。 ホリゾンタルスケーリングが可能で、データは複数のノード間で自 動的に分散される。ただし、データは主にメモリに保存されるた め、大容量のデータを扱う際にはメモリコストが高くなる。 レイテンシ メモリとSSDの両方でデータを保存でき、 SSDを使用した場合で も非常に高速な読み書き性能を発揮する。また、強力なインデッ クス機能を持っており、高速な検索が可能。 基本的にメモリ上でデータを扱うため、非常に低いレイテンシで高 速な読み書きが可能。ただし、データがメモリに収まらない場合、 パフォーマンスが低下することがある。 コストパフォーマンス メモリとSSDの両方でデータを保存できるため、データ量に応じて コストを抑えることが可能。 データがメモリに収まらない場合、コストが高くなることがある。
別のKVSを検討 最終的にはAerospikeを選択 • メモリとSSDの両方を使用するところが、Redisに比べてメモリ効率が良く、結果コストパフォーマンスが良い • オートシェーディング対応がされている
パフォーマンス • CPU ◦ 45% • メモリ ◦ 50% •
Read ◦ 47000 TPS • Write ◦ 42000 TPS • レイテンシ ◦ Read: 1ms以下 ◦ Write: 1ms以下
インフラ構成詳細 • EC2上にインストールしている • rolling updateではなく新インスタンス追加&旧インスタンス破棄方式 • 独自のUser-Defined Functionsの利用 •
予めconfigファイルも含みAMIを作成しておき、インスタンス作成時に利用 ◦ ノードの追加時も作成済みのAMIを使用する • service_threadsは5×CPUコア数
User-Defined Functions (UDFs) • データローカリティ ◦ UDFsはサーバー側で実行されるため、ネットワークを介さずに処理が可能。データ処理が高速化され、ネットワークト ラフィックが軽減される。 • 原子性
◦ UDFsはレコードレベルでトランザクションを保証し、データの一貫性を確保する。つまり、UDFは全ての操作が成功す るか、または全く操作が行われないかのいずれか。 • 柔軟性 ◦ UDFsはカスタムビジネスロジックを適用でき、通常のデータベース操作では実現できない複雑な操作を可能にする。 UZOUでは広告グループ内の予算データをインクリメントするのにレコードUDFsを使用している
モニタリング項目とアラート発生時の対応 • メモリ使用量が80%を超える場合はノードを追加する、逆に60%を下回るようならノードを削除する • ディスクやCPUなどのアラートを仕掛けているが、基本的に鳴ったことはない(メモリの使用量を起因としてスケールアウトし ているから) ◦ アラート鳴るレベルで負荷が増えてるのならノードを追加する対応を行う
実績 • 導入からAerospike起因の障害もなく運用できている
今後の展望 • バージョンアップ • マルチAZ対応 • Arm対応 • Graviton2と合わせた使用の検討 a.
コストパフォーマンス向上との報告がある b. https://aerospike.com/news/press-release/database-6-on-aws-graviton2/