Upgrade to Pro — share decks privately, control downloads, hide ads and more …

RationalBoundsOfControl_ControlProcesses2019.pdf

 RationalBoundsOfControl_ControlProcesses2019.pdf

Symposium on the Geometry of Control Representations
Control Processes 2019
Brown University

Sebastian Musslick

May 18, 2019
Tweet

More Decks by Sebastian Musslick

Other Decks in Science

Transcript

  1. Sebastian Musslick Princeton Neuroscience Institute Symposium on the Geometry of

    Control Representations Control Processes 2019 Brown University Slides available at: https://speakerdeck.com/musslick
  2. Cognitive control – reconfigure information processing away from default (automatic)

    settings (Cohen et al., 1990; Botvinick & Cohen, 2015) read email follow talk
  3. read email follow talk Cognitive control is associated with constraints

    in processing (Posner & Snyder, 1975; Shiffrin & Schneider, 1977)
  4. Bounds of cognitive control are… § A defining feature of

    cognitive control (Posner & Snyder, 1997; Shiffrin & Schneider, 1977) § Operationalized in the form of dual-task interference § A premise of general theories of cognition § ACT-R (Anderson, 1986; 2013) § EPIC (Meyer & Kieras, 1997) § SOAR (Laird, 2012) § Multi-Threaded Cognition (Salvucci & Taatgen, 2008, 2010) § Bounded Rationality (Simon, 1957) § An explanatory variable in recent models of control allocation § Opportunity Cost Model (Kurzban, Duckworth, Kable & Myers, 2013) § Expected Value of Control Theory (Shenhav, Botvinick & Cohen, 2013; Musslick, Shenhav, Botvinick & Cohen, 2015) § Value of Computation (Lieder & Griffiths, 2015; Lieder, Shenhav, Musslick & Griffiths, 2018)
  5. Bounds of cognitive control are… § A defining feature of

    cognitive control (Posner & Snyder, 1997; Shiffrin & Schneider, 1977) § A premise of general theories of cognition § ACT-R (Anderson, 1986; 2013) § EPIC (Meyer & Kieras, 1997) § SOAR (Laird, 2012) § Multi-Threaded Cognition (Salvucci & Taatgen, 2008, 2010) § An explanatory variable in recent models of control allocation § Opportunity Cost Model (Kurzban, Duckworth, Kable & Myers, 2013) § Expected Value of Control Theory (Shenhav, Botvinick & Cohen, 2013; Musslick, Shenhav, Botvinick & Cohen, 2015) § Value of Computation (Lieder & Griffiths, 2015; Lieder, Shenhav, Musslick & Griffiths, 2018) Structural limitations? Metabolic constraints?
  6. Name the color of the following stimulus and, at the

    same time, point to where it is… BROWN
  7. point left if the written word is RED point right

    if the written word is GREEN RED
  8. RED

  9. RED

  10. Name the color of the following stimulus and, at the

    same time: point left if the written word is RED point right if the written word is GREEN RED
  11. RED

  12. Accuracy Results Color Naming + Location Pointing Word Mapping Color

    Naming + Word Mapping Accuracy by Task Task Percent Correct (%) 0 20 40 60 80 100 74 87 5.1 (first part) (second part) (third part) Anne Mennen Abigail Novick
  13. (Cohen et al., 1990 ; Feng et al., 2014; Musslick

    et al., 2016) verbal manual response color word location stimulus internal (hidden) representation
  14. verbal manual response color word location stimulus internal (hidden) representation

    (Cohen et al., 1990 ; Feng et al., 2014; Musslick et al., 2016)
  15. color word location verbal manual stimulus internal (hidden) representation response

    (Cohen et al., 1990 ; Feng et al., 2014; Musslick et al., 2016) control
  16. stimulus internal (hidden) representation response color word location verbal manual

    (Cohen et al., 1990 ; Feng et al., 2014; Musslick et al., 2016) control
  17. stimulus internal (hidden) representation response color word location verbal manual

    multitasking is possible (Cohen et al., 1990 ; Feng et al., 2014; Musslick et al., 2016) control
  18. stimulus internal (hidden) representation response color word location verbal manual

    multitasking is not possible (Cohen et al., 1990 ; Feng et al., 2014; Musslick et al., 2016) control
  19. stimulus internal (hidden) representation response color word location verbal manual

    multitasking is not possible (Cohen et al., 1990 ; Feng et al., 2014; Musslick et al., 2016)
  20. stimulus internal (hidden) representation response color word location verbal manual

    (Cohen et al., 1990 ; Feng et al., 2014; Musslick et al., 2016) control purpose of cognitive control is to limit interference
  21. stimulus internal (hidden) representation response color word location verbal manual

    multitasking is not possible (Cohen et al., 1990 ; Feng et al., 2014; Musslick et al., 2016) control
  22. stimulus internal (hidden) representation response color word location verbal manual

    multitasking is possible (Cohen et al., 1990 ; Feng et al., 2014; Musslick et al., 2016) control
  23. stimulus internal (hidden) representation response color word location verbal manual

    multitasking is possible (Cohen et al., 1990 ; Feng et al., 2014; Musslick et al., 2016)
  24. stimulus internal (hidden) representation response color word location verbal manual

    multiple-resource hypothesis (Allport, 1972; Allport, 1980; Meyer & Kieras, 1997; Navon & Gopher, 1979; Wickens, 1984; Salvucci & Taatgen, 2008)
  25. Capacity for control-dependent processing… … decreases with amount of shared

    representation and is virtually invariant to network size, as is evident from § Computational simulations (Feng et al., 2014; Musslick et al., 2016, 2017) § Graph-theoretic analyses (Musslick et al., 2016; Alon et al., 2017) Multitasking Capacity Amount of Shared Representation Network Size
  26. § Computational simulations (Feng et al., 2014; Musslick et al.,

    2016, 2017) § Graph-theoretic analyses (Musslick et al., 2016; Alon et al., 2017) § Estimation techniques derived from statistical mechanics (Petri et al., under review) Capacity for control-dependent processing… … decreases with amount of shared representation and is virtually invariant to network size, as is evident from
  27. Capacity for control-dependent processing… … decreases with network depth (Alon

    et al., 2017) Network Depth 60 40 20 0 Amount of Shared Representation Multitasking Capacity Network Size = (# Units Within a Layer) Daniel Reichman
  28. Why Shared Representations? § Multi-Task Learning: Improved Learning Efficiency &

    Generalization Performance (e.g. Baxter, 1995; Caruana, 1997; Collobert & Weston, 2008; Bengio et al., 2013) shared intermediate representation auxilliary task 1 output auxilliary task 2 output primary task output …
  29. ∝ multitasking capacity # of tasks sharing an input dimension

    Andrew Saxe color word verbal manual (time to learn)2 (Musslick et al., 2017)
  30. § .. shallow linear networks (Saxe et al., 2017) §

    …in shallow non-linear networks with simple task environments (Musslick et al., 2017) § …in deep convolutional neural networks with complex task environments (Ravi et al., in prep) Tradeoff between learning efficiency and multitasking capability in 70 75 80 85 Iterations Required To Train 42 44 46 48 50 52 Multitasking Accuracy (%) 0 0.2 0.4 0.6 0.8 1 Initial Task Correlation 70 75 80 85 Iterations Required To Train 42 44 46 48 50 52 Multitasking Accuracy (%) 0 0.2 0.4 0.6 0.8 1 Initial Task Correlation Initial Task Correlation Sharing representations is optimal if § …the benefit of shared representations for learning is high, § …the cost associated with executing tasks sequentially is low, § …time horizon is finite (Ravi et al., in prep; Sagiv, Musslick, Niv & Cohen, 2018) Amount of Sharing
  31. Multitasking Training Study color word location verbal manual Abigail Novick

    word reading word pointing 1 2 3 4 1 2 3 4 session session
  32. Jonathan Cohen Ted Willke Biswadip Dey Kayhan Ozcimder Andrew Saxe

    Abigail Novick Anne Mennen Penina Krieger Yotam Sagiv Sachin Ravi Daniel Reichman Giovanni Petri Thank you!