Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Observability — Extending Into Incident Response
Search
Narimichi Takamura
October 27, 2025
Technology
2
950
Observability — Extending Into Incident Response
Observability Conference Tokyo 2025の登壇資料です。
https://o11ycon.jp/
Narimichi Takamura
October 27, 2025
Tweet
Share
More Decks by Narimichi Takamura
See All by Narimichi Takamura
インシデントキーメトリクスによるインシデント対応の改善 / Improving Incident Response using Incident Key Metrics
nari_ex
1
12k
組織的なインシデント対応を目指して〜成熟度評価と改善のステップ〜 / Towards an Organized Incident Response - Maturity Assessment and Improvement Steps -
nari_ex
7
9.2k
Waroomの開発モチベーションと今後のロードマップ / Waroom development motivation and roadmap
nari_ex
1
1.7k
Engineering with Business Impact
nari_ex
2
330
How We Foster Reliability in Diversity
nari_ex
14
13k
SRE Practices in Organizations
nari_ex
16
11k
Hardening におけるトラブルシューティング / Troubleshooting in Hardening
nari_ex
1
370
私が Engineering Manager になるまでに経験してきたこと、大切にしてきたこと / Lecture materials for Introduction to Venture Business at UEC
nari_ex
0
250
運用技術者組織の設計と運用 / Design and operation of operational engineer organization
nari_ex
11
10k
Other Decks in Technology
See All in Technology
Agent Skillsがハーネスの垣根を超える日
gotalab555
6
4k
Strands AgentsとNova 2 SonicでS2Sを実践してみた
yama3133
1
1.7k
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
Next.js 16の新機能 Cache Components について
sutetotanuki
0
170
「図面」から「法則」へ 〜メタ視点で読み解く現代のソフトウェアアーキテクチャ〜
scova0731
0
490
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
400
AWS re:Invent 2025~初参加の成果と学び~
kubomasataka
0
180
100以上の新規コネクタ提供を可能にしたアーキテクチャ
ooyukioo
0
250
ESXi のAIOps だ!2025冬
unnowataru
0
330
"人"が頑張るAI駆動開発
yokomachi
1
120
ソフトウェアエンジニアとAIエンジニアの役割分担についてのある事例
kworkdev
PRO
0
210
AgentCoreとStrandsで社内d払いナレッジボットを作った話
motojimayu
1
840
Featured
See All Featured
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
92
WENDY [Excerpt]
tessaabrams
8
35k
Believing is Seeing
oripsolob
0
15
Writing Fast Ruby
sferik
630
62k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
75
Faster Mobile Websites
deanohume
310
31k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Building Applications with DynamoDB
mza
96
6.8k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
For a Future-Friendly Web
brad_frost
180
10k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Transcript
None
2
גࣜձࣾTopotalʢͱΆͨΔʣ • h#ps:/ /topotal.com • SREΛओ࣠ʹͨ͠ελʔτΞοϓ • 2ࣄۀΛӡӦ • SRE
as a Service • SaaS for SREʢWaroomʣ • ຊΠϕϯτͷεϙϯαʔ • ϒʔεͰSaaSͷσϞΛͬͯΔͷ Ͱɺͥͻཱ͓ͪدΓ͍ͩ͘͞ʂ 3
SRE as a Service • h#ps:/ /sre-as-a-service.com • SREʹಛԽٕͨ͠ज़ࢧԉαʔϏε •
ࢧԉͷྫ • SLI/SLOͷಋೖɾӡ༻վળ • ΦϒβʔόϏϦςΟͷઃܭɾ࣮ • ΠϯγσϯτϚωδϝϯτͷվળ 4
WaroomʢΘΔʔΉʣ • h#ps:/ /waroom.com • ৫తʹΠϯγσϯτରԠΛߦ͏ͨΊ ͷSaaS • Slack ϕʔεͷରԠʹ߹ΘͤͯࣗಈԽɾ
লྗԽ͕Ͱ͖Δ 5
6
7
8
ηογϣϯ֓ཁ • ΦϒβʔόϏϦςΟʢo11yʣʹΑΔվળޮՌͷྫͱͯ͠ɺΠϯγσϯ τϨεϙϯεʢIRʣͷվળ͕ڍ͛ΒΕΔ • ମײͰվળͯͦ͠͏͕ͩɺͦͷޮՌΛఆྔతʹࣔ͢͜ͱΉ͔͍ͣ͠ => IR SaaSͷ࡞Γख /
SRE ͱͯ͠ɺIRΛఆྔతʹվળ͢ΔͨΊͷϓϥΫς Οεʢ࣮ફతͳTTXϝτϦΫεʣ ʹ͍͓ͭͯ͠·͢ɻ => ऴ൫ͰʢιϑτΣΞͰͳ͘ʣIRϓϩηεͷՄ؍ଌੑΛߴΊΔ ͱ ͍͏ςʔϚʹ౿ΈࠐΜͰ͓͠·͢ɻ 9
ຊެԋͷλʔήοτ • o11y ͷվળޮՌΛఆྔతʹࣔ͢ϓϥΫςΟεʹڵຯ͕͋Δํ • IR ͷՄࢹԽʹڵຯ͕͋Δํ • ʮo11y Λ
IR ͷྖҬ֦ு͢Δ͜ͱʯʹڵຯ͕͋Δํ 10
ΞδΣϯμ 1. Ϟνϕʔγϣϯ 2. MTTRͷ 3. ࣮ફతͳ TTX ϝτϦΫεͷఆٛ 4.
TTX ϝτϦΫεͷ׆༻ 5. o11y ΛΠϯγσϯτϨεϙϯεͷྖҬద༻͢Δ 11
1. Ϟνϕʔγϣϯ 12
͍: ͦͷԾઆຊͳͷ͔ 1. γεςϜͷՄ؍ଌੑΛվળ͢Δ 2. ෳࡶͳγεςϜͷ෦ঢ়ଶΛਪଌɾѲͰ͖ΔΑ͏ʹͳΔ 3. ൃੜ࣌ʹݪҼಛఆ͕ਝʹͳΓ෮چ͕࣌ؒ͘ͳΔ ← ί
Ϩ 13
Γ͍ͨ͜ͱ2͚ͭͩ • Where: Ͳ͜ ͕վળͨ͠ͷ͔ • How much: Ͳͷఔ վળͨ͠ͷ͔
14
ΦϒβʔόϏϦςΟʹΑͬͯߦΘΕͨ ΠϯγσϯτରԠͷվળޮՌΛ ఆྔతʹදݱ͍ͨ͠ 15
෮چ࣌ؒͷॖʹޮՌ͕͋Δͣ → MTTR Λଌఆ͢Ε͍͍ͷͰʁ 16
2. MTTRͷ 17
MTTRʢฏۉ෮چ࣌ؒʣ ͱ • ো͕ൃੜ͔ͯ͠Βम෮·ͨ෮چ͢ Δ·Ͱͷฏۉ࣌ؒͷ͜ͱ • Mean Time To Recovery(Repair,
Resolve, Restore)ͷུ • ࢉग़ํ๏1 • MTTR = ૯मཧ࣌ؒ / ނোճ 1 MTTRʢฏۉ෮چ࣌ؒʣͱʁܭࢉํ๏ͱMTBFͱͷނোɾՔಇʹ ͓͚Δؔ 18
19
SREs should move away from defaul/ng to the assump/on that
MTTX can be useful. 20
MTTRͷ༗ޮੑͷݕূ • Ծઆ • MTTR͕༗ޮͳࢦඪͳΒɺTTRΛॖ͢ΕMTTRॖ͞Ε Δͣ 21
MTTRͷ༗ޮੑͷݕূ 1. Πϯγσϯτͷσʔληοτ2ΛϥϯμϜʹ2ׂ͢Δ 2. ยํͷσʔληοτͷम෮࣌ؒ(TTR)Λ10%ݮΒ͢ 3. ֤σʔληοτͷMTTR(ฏۉम෮࣌ؒ)Λܭࢉ͢Δ 4. σʔληοτؒͷMTTRͷࠩΛऔΔ •
diff = MTTR(unmodified)- MTTR(modified) 5. MTTRͷॖׂ߹(%)Λࢉग़͢Δ • = diff/MTTR(unmodified) 6. 1ʙ4Λ10ສճ܁Γฦ͢ 2 Unveiling the black box with observability stack 22
23
݁Ռ: MTTR͕10%Ҏ্վળ͢Δͷ50ʙ60% 24
֤ΠϯγσϯτΛվળͯ͠MTTR͕վળ͠ͳ͍ཧ༝ • MTTRͷΈʹऑ͍ • ҰํͰɺΠϯγσϯτσʔλ"Β͖ͭ"͕ܹ͍͠ 25
Πϯγσϯτσʔλͷಛ3 • େ͔ͳΓૣ͘ऩଋ͢Δ • Ұ෦൵ࢂͳΠϯγσϯτʹͳΔ • → ແ࡞ҝʹσʔληοτΛׂ͢Δ ͱɺ൵ࢂͳΠϯγσϯτͷภΓ͕MTTR ͷࢉग़ʹେ͖ͳӨڹΛٴ΅͢
• ex. ෮چʹ5000ஹ͔͔࣌ؒΔΠϯγσ ϯτͷৼΓ͚ઌ͕ͲͪΒʹͳΔ͔Ͱ MTTRͷվળ۩߹େ෯ʹมΘΔ 3 The VOID Report 26
ࢀߟ: म෮࣌ؒΛมߋͤͣʹγϛϡϨʔγϣϯͨ݁͠Ռ → վળ׆ಈͷ༗ແʹ͔͔ΘΒͣɺMTTRσʔληοτ࣍ୈͰվળ or ѱԽ͢Δ 27
Incident Metrics in SRE ͷओு • γϛϡϨʔγϣϯ͔ΒΘ͔ͬͨ͜ͱ • ΠϯγσϯτނোظؒͷΒ͖͕ͭେ͖͍ͨΊɺվળ͕ MTTR
ʹө͞ΕͮΒ͍ • ex. ʮࡢൺMTTR10%վળʂʯظԽͨ͠Πϯγσϯτ͕গͳ͔͚͔ͬͨͩ • ※ ຖ·ͬͨ͘ಉ͡ྔɾ෮چ࣌ؒͷΠϯγσϯτ͕ى͖ΔͳΒՁ͕͋Δ(ϜϦ) • ݁ • MTTR վળͷධՁࢦඪͱͯ͠ʹཱͨͳ͍ • MTTRͷΈʹऑ͘ɺΠϯγσϯτσʔλΒ͖͕ܹ͍͔ͭ͠Β 28
ͳʹ͕ͩͬͨͷʁ ֤ཁૉͳ͍ • Πϯγσϯτظؒͷมಈੑ͕ߴ͍͜ͱ • MTTRΛͳΜΒ͔ͷࢦඪʹ͢Δ͜ͱ • ࢦඪΛͱʹվળͷՌΛ֬ೝ͢Δ͜ͱ → తͱࢦඪ͕טΈ߹͍ͬͯͳ͍͜ͱ͕
29
σʔλੳʢԾઆݕূܕʣͷྲྀΕ 30
MTTRΛࢦඪʹ͢Δͱ͖ͷࢥߟͷྲྀΕ 31
ى͖͍ͯͨ͜ͱ: ԾઆݕূϩδοΫͷෆ߹ 32
ղܾࡦ: վળՕॴΛ໌Β͔ʹ͠ɺมಈੑΛ͑Δ 33
ղܾࡦ: վળՕॴΛ໌Β͔ʹ͠ɺมಈੑΛ͑Δ 34
͜͜·Ͱͷ·ͱΊ • MTTR(෮چ࣌ؒ)σʔλมಈੑ͕ߴ͍ͨΊվળࢦඪʹෆద • վળՕॴΛ໌֬Խ͠ɺΑΓࡉ͔͍ TTX ϝτϦΫεΛར༻͢Δ͜ ͱͰɺมಈੑΛ͑Δ͜ͱ͕Մೳ → TTRΑΓࡉ͔͍ϝτϦΫεͷधཁ͕ग़ͯ͘Δ
35
3. ࣮ફతͳ TTX ϝτϦΫε 36
Waroom͕ߟ͑Δ࣮ફతͳϝτϦΫεͱ • ཏతͰ͋Δ • ཻ͕ࡉ͔͍ • ऩू͕ݱ࣮తͰ͋Δ 37
ͲΜͳTTXϝτϦΫεΛ ऩू͢ΔͱΑ͍ͩΖ͏͔ 38
39
TTXϝτϦΫεͷ՝ײ • ੈͷதʹࣄྫ͍͔ͭ͋͘Δ͕ɺఆٛ౷Ұ͞Ε͍ͯͳ͍ • ࣄྫಉ࢜ΛΈ߹ΘͤΑ͏ͱͯ͠ɺॏෳෆ͕ੜ͡Δ • → ஶ໊ͳจݙΛϕʔεʹɺࡉ͔͘ɺཏతͳఆٛΛࢦ͢ 40
TTXϝτϦΫεఆٛͷྲྀΕ 1. ϕετϓϥΫςΟεΛֶͿ 2. ΠϯγσϯτεςʔλεΛఆٛ͢Δ 3. ΠϯγσϯτϚΠϧετʔϯ(εςʔλεͷڥ)Λఆٛ͢Δ 4. TTXϝτϦΫεΛఆٛ͢Δ 41
ϕετϓϥΫςΟεΛֶͿ 42
ΠϯγσϯτεςʔλεΛͬ͘͟Γఆٛ͢Δ 43
44
45
ϚΠϧετʔϯΛͱʹ TTXʹམͱ͠ࠐΉ 46
47
ϝτϦΫεऩू͍ͨΜ • ࡉ͔ͳϝτϦΫεΛఆٛ͢ΔͱɺϚΠϧετʔϯΛ͑Δ͝ͱ ʹλΠϜελϯϓΛه͢Δඞཁ͕͋Δ • ରԠதʹ͍͍ͪͪਓ͕ؒଧࠁ͢Δͷඇݱ࣮త • → Waroom ͰSlack
BotͰࣗಈऩू͍ͯ͠·͢ 48
ରԠதͷΠϕϯτΛτϦΨʔʹࣗಈऩू͢Δྫ ϚΠϧετʔϯ ରԠதͷΠϕϯτ Detectedʢݕʣ Ξϥʔτൃੜ௨ Acknowledgedʢೝʣ νϟϯωϧ࡞ɺΠϯγσϯτىථ Iden.fiedʢղܾࡦͷಛఆʣ RunbookͷϑΣʔζ͚ʢPrecheck ͱResolu.onʣ
Recoveredʢ෮چʣ SlackͷΓͱΓ͔ΒAI͕அ͢Δ 49
4. TTXϝτϦΫεͷ׆༻ 50
ϝτϦΫεΛޮՌతʹ͏ͨΊʹ ੳͷతͱϝτϦΫεͷಛΛ߹ͤ͞Δ 51
52
ϝτϦΫεͱվળࢪࡦͷྫ TTX ՝ վળࢪࡦ TTDetectʢݕʣ ൃੜ͔ͯ͠Βݕ·Ͱʹ࣌ ͕͔͔ؒΔ ϞχλϦϯάͷվળ TTEngageʢνʔϜߏʣ ରԠνʔϜΛߏஙʹ͕࣌ؒ
͔͔Δ γϑτׂͷ໌֬ԽɺΦ ϯίʔϧ੍ͷಋೖ TTInves-gateʢௐࠪʣ োΓ͚ʹ͕͔͔࣌ؒ Δ RunbookͷμογϡϘʔυͷ උ TTFixʢम෮ʣ োͷम෮ʹ͕͔͔࣌ؒΔ ϩʔϧόοΫͷߴԽ 53
54
യવͱͨ͠ԾઆΛͱʹɺ͔Β՝Λݟ͚ͭΔ Ծઆ ৽ͨʹൃݟͨ͠՝ͷྫ ڞ௨ͷڥͳͷͰɺ৫ͷ֤ TTXͷҰఆͷͣ αʔϏενʔϜʹΑͬͯύϑ ΥʔϚϯε͕ҟͳΔ ֤TTXఆʹ͍ۙͣ ʢex. TTAͳΒ10Ҏ͘Β
͍ʣ ʢ࣮ʣணख͕શମతʹ͍ɺ ղܾࡦͷಛఆ͕શମతʹ͍ 55
56
57
5. o11y ΛΠϯγσϯτϨεϙϯεʹద༻͢ Δ 58
o11yΛIRద༻͢Δ2 • ΠϯγσϯτϨεϙϯεͷ෦ߏͷ Մ؍ଌੑΛ͞ΒʹߴΊΔ • TTXͷఆٛʹΑͬͯɺϝτϦΫεͳ Μͱͳ͘ಋೖࡁΈ • ϝτϦΫεɺϩάɺτϨʔεͷϓϥΫ ςΟεΛ׆༻͢Δ͜ͱͰվળͰ͖ͳ͍
ͩΖ͏͔ 2 Unveiling the black box with observability stack 59
Metrics 60
ബͬ͢ΒͱΔ"ยखམͪ"ײ • հͨ͠TTXϝτϦΫεɺ͍ͣΕTTRΛղ͚ͨͩ͠ • ͭ·ΓɺγεςϜ෮چ࣌ؒͷॖ ʹ͚ͩয͕͍ͨͬͯΔ • SREࢹͰ αʔϏεͷ৴པੑ ͷ؍͕ॏཁ
• ex. ֶͼ͋Δ͔ɺ࠶ൃࢭ͞ΕΔ͔ • ϓϩμΫτӡӦࢹͰ ސ٬ͷ৴པੑ ͷ؍͕ॏཁ • ex. ސ٬ରԠेʹߦΘΕ͍ͯΔ͔ => Մ؍ଌੑΛߴΊΔʹɺΑΓଟ֯తͳରԠϓϩηεͷϝτϦΫε͕ඞཁ 61
γεςϜ෮چରԠͱฒߦ͍ͯͬͯ͠Δ͜ͱ • ސ٬ͷઆ໌ɾࣄͷڞ༗ • Πϯγσϯτͷใࠂɾੳ • ࠜຊରࡦͷݕ౼ɾ࣮ࢪ => ݱঢ়ͩͱɺ্هͷ׆ಈͷ؍ଌείʔϓ֎ʹͳ͍ͬͯΔ 62
TTXϝτϦΫεͷԠ༻: ؍ଌൣғͷ֦େ ؍ଌൣғΛΠϯγσϯτରԠશମʹ֦ு͠ɺվળࢦඪͱͳΔϝτϦΫεΛఆٛ͢Δ ϝτϦΫε໊ త Incident Response Metrics ७ਮͳ෮چରԠͷ՝ಛఆɾվળࢦඪ Customer
Reliability Metrics ސ٬ରԠͷ՝ಛఆɾվળࢦඪ Learning Metrics ৫ֶ͕ͼΛಘΔ·Ͱͷ׆ಈͷτϥοΩϯά Improvement Metrics ࠜຊରࡦͷ࣮ࢪঢ়گͷੳ => ࠓճɺCustomer Reliability Metrrics ͷྫΛհ 63
64
Log 65
ରԠதͷΠϕϯτΛه͢Δ • ऩू • ୭͕ɾ͍ͭɾͲͷίϚϯυɾͲͷ அΛߦ͔ͬͨΛߏԽϩάԽ • ex. νϟοτɺεςʔλεมߋɺ֎෦ πʔϧʹΑΔΠϕϯτ࿈ܞ
• ׆༻ྫ • λΠϜϥΠϯੜεςʔλεϖʔ δΛࣗಈੜ ! 66
WaroomͷཪଆͰ४උ͕ਐߦத... 67
Trace 68
ରԠϓϩηεͷྲྀΕɺґଘؔ Λ؍ଌ͢Δ • ऩू • Πϯγσϯτεςʔλε୯ҐͰεύϯԽ • ݕʙ෮چ·ͰΛ1ຊͷτϨʔεͱͯ͠ཧ • ΞΫγϣϯ͝ͱʹࡉԽͯ͠౷߹
• ׆༻ྫ • εςʔλεҠߦؒͰߦΘΕͨॲཧͱॴཁ࣌ ؒΛՄࢹԽ ! • ରԠͷϘτϧωοΫʹͳͬͨఔΛಛఆ ✨ 69
πʔϧ͕ԣஅ͢ΔதͰΠϕϯτΛͲ͏औಘ͢Δ͔ • ෮چରԠ࣌ʹ֤छπʔϧΛԣஅతʹར༻͢Δ͜ͱ͕ଟ͍ • ex. PagerDuty → Slack → Datadog
→ AWS → GitHub... • ݱঢ়ɺ୯ҰΠϯγσϯτͷͨΊʹߦͬͨ͜ͱΛ͍ͬͯΔͷରԠ ऀͷΈ • ରԠऀ͕खಈͰMELTΛอଘ͢Δͷඇݱ࣮త → AIϕʔεͰରԠΛ͢ΔੈքઢͰɺΑΓଟ͘ͷใ͕औಘՄೳʹʂ 70
AIϕʔεͷΠϯγσϯτϨε ϙϯε • AI͕ࣗવݴޠͰୡ͞Εͨ༰Λͱ ʹɺMCPαʔόʔ֎෦πʔϧͱ࿈ܞ ͠ͳ͕Β͞·͟·ͳૢ࡞Λߦ͏ • → ৗʹWaroomΛܦ༝ͯ͠ΞΫγϣϯ ͕ߦΘΕΔΑ͏ʹͳΓɺࡉ͔ͳΠϕϯ
τΛࣗಈతʹอଘͰ͖Δ 71
·ͱΊ 1. վળࢦඪͱͯ͠MTTRཱͨͳ͍ 2. ϝτϦΫε׆༻ɺతʙσʔλੳʹࢸΔ·Ͱͷ߹ੑ͕ॏཁ 3. มಈੑΛ͑ΔͨΊʹɺ͍ͷ۩ମԽͱϝτϦΫεͷࡉԽ͕ॏ ཁ 4. TTXϝτϦΫεͷఆٛաఔͱ׆༻ํ๏
5. o11yͷϓϥΫςΟεΛ࣋ͪࠐΉ͜ͱͰɺΑΓแׅతͳ؍ଌʹۙͮ͘ 72
͍͞͝ʹ • ϝτϦΫεͷࣗಈऩूͷΈΛ࡞Δ ͷ͍ͨΜ • ͞ΒʹɺՄࢹԽج൫ͷߏங͍ͨΜ • ͞ΒʹɺϝτϦΫεΛΧςΰϦϥϕ ϧͰ෦நग़͢Δͷ͍ͨΜ •
→ ͥͻ Waroom Λ͝׆༻͍ͩ͘͞ • ڵຯ͕༙͍ͨํ Topotal ͷϒʔε ʂ 73
͋Γ͕ͱ͏͍͟͝·ͨ͠