Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Laravel LT会 with もくもく #1
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
narita1980
March 02, 2019
Technology
0
590
Laravel LT会 with もくもく #1
narita1980
March 02, 2019
Tweet
Share
More Decks by narita1980
See All by narita1980
Whisperを使ったみて_思ったこと.pdf
narita1980
0
86
Glide(グライド)で PWAアプリを作ってみた!
narita1980
0
500
#雑プットのススメ
narita1980
0
160
Other Decks in Technology
See All in Technology
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
420
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
170
(技術的には)社内システムもOKなブラウザエージェントを作ってみた!
har1101
0
330
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.6k
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
480
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
780
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
150
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
150
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
190
AWS DevOps Agent x ECS on Fargate検証 / AWS DevOps Agent x ECS on Fargate
kinunori
2
220
生成AIと余白 〜開発スピードが向上した今、何に向き合う?〜
kakehashi
PRO
0
170
CDKで始めるTypeScript開発のススメ
tsukuboshi
1
570
Featured
See All Featured
How to Talk to Developers About Accessibility
jct
2
140
Measuring & Analyzing Core Web Vitals
bluesmoon
9
760
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
Statistics for Hackers
jakevdp
799
230k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
590
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
230
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
310
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
79
Why Our Code Smells
bkeepers
PRO
340
58k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
110
The Limits of Empathy - UXLibs8
cassininazir
1
220
Transcript
-BSBWFM-5ձ XJUI͘͘ גࣜձࣾϓϥϜβ
ࣗݾհ גࣜձࣾϓϥϜβ &OHJOFFSJOH.BOBHFS ߥ୍ ༔ ΞϥλΩ Ϣ !ZVUBLJ 5XJUUFS͡Ί͔ͨΓͰ͢!
ձࣾհΛ͍ͤͯͩ͘͞͞ʂ • גࣜձࣾϓϥϜβ • ۀγεςϜΛ࡞Γଓ͚ • 8FCγεςϜߏஙΛಘҙͱ͢Δ डୗ։ൃձࣾͰ͢ɻ !QMVNTB ެࣜπΠολʔ͋Γ·͢ʂ
ϓϥϜβͷࣄۀʹ͖ͭ·ͯ͠ • ۀʹؔΘΔ͜ͱશൠͷγεςϜԽΛ͓ख͍͍ͯ͠·͢ɻ • ۀքΘͣʂ • $3.ൢηʔϧεϑΥʔε • ۈଵཧ࠾ࢉཧٻཧ •
ڭҭ৹ࠪ • ΧελϚʔ͚αΠτͷ੍࡞Ұ෦͍ͬͯ·͢ɻ • ίʔϙϨʔταΠτ • ΩϟϯϖʔϯαΠτɺϥϯσΟϯάϖʔδͳͲ
ಘҙͳͷΦʔμʔϝΠυͷγεςϜ։ൃͰ͢ɻ
ΦʔμʔϝΠυʴडୗͷಛ༗ͷ՝ ΦʔμʔϝΠυͳγεςϜΛ͝ཁ͞ΕΔ͓٬༷ʹ ɾͱͱγεςϜԽ͕ेʹߦΘΕ͓ͯΒͣɺۀϑϩʔ͕ൃࢄ͍ͯ͠Δ ɾύοέʔδͰରԠͰ͖ͳ͍Α͏ͳࣄۀಛ༗ͷۀϑϩʔ͕͋Δ ͱ͍ͬͨঢ়گΛղܾ͍ͨ͠ͱ͍͏έʔε͕ଟ͘ɺैདྷͷ8'։ൃͰରԠ͢Δͱ ɾ͓٬༷ࣗຊʹཉ͍͠ͷ͕Πϝʔδ͖͠Ε͍ͯͳ͔ͬͨ ɾӡ༻ͰΧόʔ͍͕ͯͨ͠ӅΕͨཁ͕ग़ͯ͘Δ ͱ͍͏͜ͱ͕සൟʹൃੜ͠·͢ɻ
ΦʔμʔϝΠυʴडୗͷಛ༗ͷ՝ Ռ͕࠷ॳͷܭըͰݻఆ͞ΕɺظݻఆͱͳΔͱ ઌͷΑ͏ͳࣄଶʹ໘ͨ࣌͠ɺຊʹඞཁͳػೳΛଗ͑ΔͨΊʹ ௐίετ͕͔͔Γ͗ͯ͢͠·͍ɺاۀؒͷؔ͘͠ͳ͖ͬͯ·͢ɻ
ͦΕʹରԠ͢ΔαʔϏεΛ༻ҙ͍ͯ͠·͢ • ࠃϥϘ։ൃ • ͓٬༷ͷຊʹཉ͔ͬͨ͠ͷ Λࢦ͢։ൃͷܖܗଶͰ͢ɻ
ՌͰ ͳ͘νʔϜ ͷ͝ఏڙ
ࢤΛڞʹ͢Δ։ൃνʔϜΛɺ͙͢ʹ • ΤϯδχΞ͕ෆࡏͷاۀ༷ɺ෦༷Ͱਝʹ ʹ͍ۙΠϝʔδͰγεςϜΛ։ൃ͍ͯ͘͠ମ੍Λ͑Δ͜ͱ͕Ͱ͖·͢ɻ • ߟྀ࿙ΕʹΑΔػೳͷաෆɺͪΐͬͱͨ͠ΞΠσΞࠩ͠ࠐΈΛߦ͏࣌ʹ ܖͷറΓʹΑΔࡶͳϓϩδΣΫτௐखଓ͖͔Βղ์͞Ε ʮຊʹཉ͍͠ͷʯʹؔ৺͝ͱΛूதͰ͖Δͷ͕࠷େͷϝϦοτͰ͢ɻ
ฐࣾ։ൃݱͷಛ
͍ΖΜͳۀքͷγεςϜʹؔΘͬͯ·͢! ฐࣾಛผʹۀքΛߜ͍ͬͯΔΘ͚Ͱͳ͍ͷͰɺ ࣏ࣗମͷॻྨཧɺපӃͷ༧ཧɺӦۀཧɺ&$ͳͲ ଟ࠼ͳཁ݅ʹؔΘ͍ͬͯͯ نʹΑͬͯϲ݄ɺɺҰͳͲͷεύϯͰϊϋͷੵ͕Ͱ͖·͢ɻ
ϑϧελοΫؾຯͳΤϯδχΞ͕ଟ͍Ͱ͢! গਫ਼Ӷͳͷ͋Γ ઃܭϑΣʔζ͔Βอक·ͰҰ؏ͯ͠ܞΘΔ͜ͱ͕Α͋͘ΔͨΊͰ͢
ϑοτϫʔΫྑٕ͘ज़ཁ݅Λߋ৽ͯ͠·͢! ͦͷθϩελʔτʹͳΔ͜ͱ͋Γ·͢ͷͰ ͓٬༷͔Βঝೝ͍͚ͨͩΕϛυϧΣΞ͔ΒϑϨʔϜϫʔΫ·Ͱ ࠷৽ͷߏͰνϟϨϯδͰ͖·͢ɻ • -BSBWFMܥ͔Β·ͰͦΕͧΕͷόʔδϣϯͰͷ։ൃ࣮͕͋Γ·͢ɻ • ݴޠɺ6*ϑϨʔϜϫʔΫ͍Ζ͍Ζࢼͯ͠·͢ɻ • ࠓΫϥυωΠςΟϒʹؔͯࣾ͠ʹਪਐνʔϜΛൃͯ͠ݚڀதͰ͢ɻ
ٕज़Ωʔϫʔυ • ΠϯϑϥΦϯϓϨ͔Β"84·Ͱ ࠷ۙ%PDLFSݕূத • 1)1ϑϨʔϜϫʔΫͳΒ-BSBWFM • $BLF • ;FOE
• ϑϩϯτ7VFKT͕த৺ ࠷ۙΑ͏͘K2VFSZଔۀͭͭ͠ɾɾɾ • 7VFY • 7VF3PVUFS • 7VFUJGZ
ͱ͍͏͜ͱͰ • খ͞ͳձࣾͰ͕͢ɺΘ͍Θָ͍ͬͯ͘͠·͢ɻ • ࠓ·Ͱࣾ֎ަྲྀ͕߇͑ΊͩͬͨͷͰ͕͢ɺ ࠓޙ৭ʑͳΠϕϯτʹ͓अຐͯ͠օ༷ͱަྲྀ͕Ͱ͖ͨΒͱئ͍ͬͯ·͢ʂ • ձࣾ๚ɺ࠾༻Ԡืɺࣄͷ͝૬ஊ େܴͰ͢ʂ
ຊ ฐࣾʹ͓ӽ͍ͩ͘͠͞·ͯ͠ʹ͋Γ͕ͱ͏͍͟͝·͢ʂ -5ɺ͘͘ڞʹָ͓͘͠ͳͲͰ͖Ε͍Ͱ͢ɻ
Ͳ͏ͧΑΖ͘͠ ͓ئ͍͍ͨ͠·͢ʂ