Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CoreMLではじめる機械学習
Search
naru-jpn
June 21, 2017
Technology
0
1.2k
CoreMLではじめる機械学習
Neural Networks on Keras ( TensorFlow backends )
naru-jpn
June 21, 2017
Tweet
Share
More Decks by naru-jpn
See All by naru-jpn
配信アプリのためのリアルタイムプッシュ通知ぼかしの夢
narujpn
3
990
PiPを応用した配信コメントバー機能の開発秘話と技術の詳解 / pip_streaming_comment_bar
narujpn
3
4.5k
Updating an App to Use Swift Concurrency 解説
narujpn
2
360
PiP で実現するミラティブの配信コメントバー / pip-streaming-comment-bar
narujpn
0
1.3k
App Extension のスタックトレース情報からクラッシュを解析/集計する / Analyzing app extension's stack trace
narujpn
3
1.7k
ミラティブとWebRTC - WebRTC framework の中身を覗いてみよう / WebRTC framework AudioUnit Processing
narujpn
1
2.2k
CoreML3のオンデバイストレーニングでつくる母音推定
narujpn
0
460
AltConfと周辺の歩き方
narujpn
0
2k
エンジニア経験を活かしたスクラムマスターとして 開発チームとプロダクトを成長させる
narujpn
1
430
Other Decks in Technology
See All in Technology
Lookerで実現するセキュアな外部データ提供
zozotech
PRO
0
200
投資戦略を量産せよ 2 - マケデコセミナー(2025/12/26)
gamella
0
390
Introduce marp-ai-slide-generator
itarutomy
0
130
ハッカソンから社内プロダクトへ AIエージェント「ko☆shi」開発で学んだ4つの重要要素
sonoda_mj
6
1.7k
AWSインフルエンサーへの道 / load of AWS Influencer
whisaiyo
0
220
100以上の新規コネクタ提供を可能にしたアーキテクチャ
ooyukioo
0
250
MariaDB Connector/C のcaching_sha2_passwordプラグインの仕様について
boro1234
0
1k
AWSの新機能をフル活用した「re:Inventエージェント」開発秘話
minorun365
2
450
特別捜査官等研修会
nomizone
0
570
Amazon Bedrock Knowledge Bases × メタデータ活用で実現する検証可能な RAG 設計
tomoaki25
6
2.4k
業務の煩悩を祓うAI活用術108選 / AI 108 Usages
smartbank
7
8.1k
ハッカソンから社内プロダクトへ AIエージェント ko☆shi 開発で学んだ4つの重要要素
leveragestech
0
160
Featured
See All Featured
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Claude Code のすすめ
schroneko
67
210k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
710
Designing for humans not robots
tammielis
254
26k
Heart Work Chapter 1 - Part 1
lfama
PRO
3
35k
Typedesign – Prime Four
hannesfritz
42
2.9k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
49
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
73
My Coaching Mixtape
mlcsv
0
13
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
69
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
330
Transcript
CoreMLͰ͡ΊΔػցֶश Neural Networks on Keras ( TensorFlow backends ) Timers
inc. / Github: naru-jpn / Twitter: @naruchigi
CoreMLͰ͡ΊΔػցֶश Timers inc. / Github: naru-jpn / Twitter: @naruchigi Neural
Networks on Keras ( TensorFlow backends )
What is Neural Networks?
One of machine learning models. - Neural networks - Tree
ensembles - Support vector machines - Generalized linear models - … https://developer.apple.com/documentation/coreml/converting_trained_models_to_core_ml
What is Keras?
Theano TensorFlow Keras Keras is a high-level neural networks API,
written in Python and capable of running on top of either TensorFlow, CNTK or Theano. https://keras.io
What is CoreML?
Accelerate and BNNS Metal Performance Shaders CoreML BNNS : Basic
Neural Network Subroutines https://developer.apple.com/documentation/coreml With Core ML, you can integrate trained machine learning models into your app. Core ML requires the Core ML model format.
CoreML Trained Model Application Keras Train coremltools
What is coremltools?
Convert existing models to .mlmodel format from popular machine learning
tools including Keras, Caffe, scikit-learn, libsvm, and XGBoost. https://pypi.python.org/pypi/coremltools coremltools
CoreML Trained Model Application Keras Train coremltools
(Demo App)
Environment - Tensorflow 1.1.0 (virtualenv) - Keras 1.2.2 - coremltools
0.3.0 - Xcode 9.0 beta ※ Tensorflow, Keras coremltools ͷରԠόʔδϣϯͰ͋Δඞཁ͕͋ΔͷͰগ͠ݹ͍Ͱ͢ɻ
Programs to train neural networks - mnist_mlp.py - mnist_cnn.py ※
Keras ͷ࠷৽όʔδϣϯͷϦϯΫʹͳ͍ͬͯ·͕͢ɺ࣮ࡍόʔδϣϯ 1.2.2 Λࢀর͠·͢ɻ https://github.com/fchollet/keras/tree/master/examples
Convert model with coremltools 1. Import coremltools import coremltools model
= Sequential() … coreml_model = coremltools.converters.keras.convert(model) coreml_model.save("keras_mnist_mlp.mlmodel") 2. Convert model
Import model into Xcode project // 入力データ class keras_mnist_mlpInput :
MLFeatureProvider { var input1: MLMultiArray // … } // 出力データ class keras_mnist_mlpOutput : MLFeatureProvider { var output1: MLMultiArray // … } // モデル @objc class keras_mnist_mlp:NSObject { var model: MLModel init(contentsOf url: URL) throws { self.model = try MLModel(contentsOf: url) } // … func prediction(input: keras_mnist_mlpInput) throws -> keras_mnist_mlpOutput { // … keras_mnist_mlp.mlmodel Λѻ͏ҝͷίʔυ͕ࣗಈੜ͞ΕΔ
Prepare model and input in code // モデルの作成 let model
= keras_mnist_mlp() // 入力データの格納用変数 (入力は28*28の画像) let input = keras_mnist_mlpInput( input1: try! MLMultiArray(shape: [784], dataType: .double) )
Modify input value // 入力データの 0 番目の要素に 1.0 を代入 input.input1[0]
= NSNumber(value: 1.0)
Make a prediction // モデルに入力データを渡して計算 let output = try model.prediction(
input: self.input )
CoreML Trained Model Application Keras Train coremltools Recap
Demo App on Github https://github.com/naru-jpn/MLModelSample
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠