Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CoreMLではじめる機械学習
Search
naru-jpn
June 21, 2017
Technology
0
1.1k
CoreMLではじめる機械学習
Neural Networks on Keras ( TensorFlow backends )
naru-jpn
June 21, 2017
Tweet
Share
More Decks by naru-jpn
See All by naru-jpn
配信アプリのためのリアルタイムプッシュ通知ぼかしの夢
narujpn
3
840
PiPを応用した配信コメントバー機能の開発秘話と技術の詳解 / pip_streaming_comment_bar
narujpn
3
3.9k
Updating an App to Use Swift Concurrency 解説
narujpn
2
300
PiP で実現するミラティブの配信コメントバー / pip-streaming-comment-bar
narujpn
0
1.1k
App Extension のスタックトレース情報からクラッシュを解析/集計する / Analyzing app extension's stack trace
narujpn
3
1.4k
ミラティブとWebRTC - WebRTC framework の中身を覗いてみよう / WebRTC framework AudioUnit Processing
narujpn
1
2.1k
CoreML3のオンデバイストレーニングでつくる母音推定
narujpn
0
410
AltConfと周辺の歩き方
narujpn
0
1.9k
エンジニア経験を活かしたスクラムマスターとして 開発チームとプロダクトを成長させる
narujpn
1
390
Other Decks in Technology
See All in Technology
Oracle Database Technology Night #87-1 : Exadata Database Service on Exascale Infrastructure(ExaDB-XS)サービス詳細
oracle4engineer
PRO
1
210
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
19k
ExaDB-XSで利用されているExadata Exascaleについて
oracle4engineer
PRO
3
300
サバイバルモード下でのエンジニアリングマネジメント
konifar
21
6.7k
JavaにおけるNull非許容性
skrb
2
2.7k
ABWG2024採択者が語るエンジニアとしての自分自身の見つけ方〜発信して、つながって、世界を広げていく〜
maimyyym
1
210
EDRの検知の仕組みと検知回避について
chayakonanaika
12
5.3k
技術スタックだけじゃない、業務ドメイン知識のオンボーディングも同じくらいの量が必要な話
niftycorp
PRO
0
130
Apache Iceberg Case Study in LY Corporation
lycorptech_jp
PRO
0
370
1行のコードから社会課題の解決へ: EMの探究、事業・技術・組織を紡ぐ実践知 / EM Conf 2025
9ma3r
12
4.7k
開発組織を進化させる!AWSで実践するチームトポロジー
iwamot
2
530
Amazon Athenaから利用時のGlueのIcebergテーブルのメンテナンスについて
nayuts
0
110
Featured
See All Featured
Code Review Best Practice
trishagee
67
18k
Embracing the Ebb and Flow
colly
84
4.6k
How to train your dragon (web standard)
notwaldorf
91
5.9k
Done Done
chrislema
182
16k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
366
25k
Making the Leap to Tech Lead
cromwellryan
133
9.1k
How to Think Like a Performance Engineer
csswizardry
22
1.4k
GraphQLとの向き合い方2022年版
quramy
44
14k
Facilitating Awesome Meetings
lara
53
6.3k
Navigating Team Friction
lara
183
15k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
100
18k
Transcript
CoreMLͰ͡ΊΔػցֶश Neural Networks on Keras ( TensorFlow backends ) Timers
inc. / Github: naru-jpn / Twitter: @naruchigi
CoreMLͰ͡ΊΔػցֶश Timers inc. / Github: naru-jpn / Twitter: @naruchigi Neural
Networks on Keras ( TensorFlow backends )
What is Neural Networks?
One of machine learning models. - Neural networks - Tree
ensembles - Support vector machines - Generalized linear models - … https://developer.apple.com/documentation/coreml/converting_trained_models_to_core_ml
What is Keras?
Theano TensorFlow Keras Keras is a high-level neural networks API,
written in Python and capable of running on top of either TensorFlow, CNTK or Theano. https://keras.io
What is CoreML?
Accelerate and BNNS Metal Performance Shaders CoreML BNNS : Basic
Neural Network Subroutines https://developer.apple.com/documentation/coreml With Core ML, you can integrate trained machine learning models into your app. Core ML requires the Core ML model format.
CoreML Trained Model Application Keras Train coremltools
What is coremltools?
Convert existing models to .mlmodel format from popular machine learning
tools including Keras, Caffe, scikit-learn, libsvm, and XGBoost. https://pypi.python.org/pypi/coremltools coremltools
CoreML Trained Model Application Keras Train coremltools
(Demo App)
Environment - Tensorflow 1.1.0 (virtualenv) - Keras 1.2.2 - coremltools
0.3.0 - Xcode 9.0 beta ※ Tensorflow, Keras coremltools ͷରԠόʔδϣϯͰ͋Δඞཁ͕͋ΔͷͰগ͠ݹ͍Ͱ͢ɻ
Programs to train neural networks - mnist_mlp.py - mnist_cnn.py ※
Keras ͷ࠷৽όʔδϣϯͷϦϯΫʹͳ͍ͬͯ·͕͢ɺ࣮ࡍόʔδϣϯ 1.2.2 Λࢀর͠·͢ɻ https://github.com/fchollet/keras/tree/master/examples
Convert model with coremltools 1. Import coremltools import coremltools model
= Sequential() … coreml_model = coremltools.converters.keras.convert(model) coreml_model.save("keras_mnist_mlp.mlmodel") 2. Convert model
Import model into Xcode project // 入力データ class keras_mnist_mlpInput :
MLFeatureProvider { var input1: MLMultiArray // … } // 出力データ class keras_mnist_mlpOutput : MLFeatureProvider { var output1: MLMultiArray // … } // モデル @objc class keras_mnist_mlp:NSObject { var model: MLModel init(contentsOf url: URL) throws { self.model = try MLModel(contentsOf: url) } // … func prediction(input: keras_mnist_mlpInput) throws -> keras_mnist_mlpOutput { // … keras_mnist_mlp.mlmodel Λѻ͏ҝͷίʔυ͕ࣗಈੜ͞ΕΔ
Prepare model and input in code // モデルの作成 let model
= keras_mnist_mlp() // 入力データの格納用変数 (入力は28*28の画像) let input = keras_mnist_mlpInput( input1: try! MLMultiArray(shape: [784], dataType: .double) )
Modify input value // 入力データの 0 番目の要素に 1.0 を代入 input.input1[0]
= NSNumber(value: 1.0)
Make a prediction // モデルに入力データを渡して計算 let output = try model.prediction(
input: self.input )
CoreML Trained Model Application Keras Train coremltools Recap
Demo App on Github https://github.com/naru-jpn/MLModelSample
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠