Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CoreMLではじめる機械学習
Search
naru-jpn
June 21, 2017
Technology
0
1.2k
CoreMLではじめる機械学習
Neural Networks on Keras ( TensorFlow backends )
naru-jpn
June 21, 2017
Tweet
Share
More Decks by naru-jpn
See All by naru-jpn
配信アプリのためのリアルタイムプッシュ通知ぼかしの夢
narujpn
3
990
PiPを応用した配信コメントバー機能の開発秘話と技術の詳解 / pip_streaming_comment_bar
narujpn
3
4.5k
Updating an App to Use Swift Concurrency 解説
narujpn
2
360
PiP で実現するミラティブの配信コメントバー / pip-streaming-comment-bar
narujpn
0
1.3k
App Extension のスタックトレース情報からクラッシュを解析/集計する / Analyzing app extension's stack trace
narujpn
3
1.7k
ミラティブとWebRTC - WebRTC framework の中身を覗いてみよう / WebRTC framework AudioUnit Processing
narujpn
1
2.2k
CoreML3のオンデバイストレーニングでつくる母音推定
narujpn
0
460
AltConfと周辺の歩き方
narujpn
0
2k
エンジニア経験を活かしたスクラムマスターとして 開発チームとプロダクトを成長させる
narujpn
1
430
Other Decks in Technology
See All in Technology
フィッシュボウルのやり方 / How to do a fishbowl
pauli
2
380
Building Serverless AI Memory with Mastra × AWS
vvatanabe
0
500
New Relic 1 年生の振り返りと Cloud Cost Intelligence について #NRUG
play_inc
0
230
アプリにAIを正しく組み込むための アーキテクチャ── 国産LLMの現実と実践
kohju
0
220
2025-12-27 Claude CodeでPRレビュー対応を効率化する@機械学習社会実装勉強会第54回
nakamasato
0
130
テストセンター受験、オンライン受験、どっちなんだい?
yama3133
0
140
M&Aで拡大し続けるGENDAのデータ活用を促すためのDatabricks権限管理 / AEON TECH HUB #22
genda
0
230
特別捜査官等研修会
nomizone
0
560
たまに起きる外部サービスの障害に備えたり備えなかったりする話
egmc
0
400
"人"が頑張るAI駆動開発
yokomachi
1
130
TED_modeki_共創ラボ_20251203.pdf
iotcomjpadmin
0
150
アラフォーおじさん、はじめてre:Inventに行く / A 40-Something Guy’s First re:Invent Adventure
kaminashi
0
140
Featured
See All Featured
It's Worth the Effort
3n
187
29k
What the history of the web can teach us about the future of AI
inesmontani
PRO
0
370
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
210
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Test your architecture with Archunit
thirion
1
2.1k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
29
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
0
100
Designing for humans not robots
tammielis
254
26k
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
110
Transcript
CoreMLͰ͡ΊΔػցֶश Neural Networks on Keras ( TensorFlow backends ) Timers
inc. / Github: naru-jpn / Twitter: @naruchigi
CoreMLͰ͡ΊΔػցֶश Timers inc. / Github: naru-jpn / Twitter: @naruchigi Neural
Networks on Keras ( TensorFlow backends )
What is Neural Networks?
One of machine learning models. - Neural networks - Tree
ensembles - Support vector machines - Generalized linear models - … https://developer.apple.com/documentation/coreml/converting_trained_models_to_core_ml
What is Keras?
Theano TensorFlow Keras Keras is a high-level neural networks API,
written in Python and capable of running on top of either TensorFlow, CNTK or Theano. https://keras.io
What is CoreML?
Accelerate and BNNS Metal Performance Shaders CoreML BNNS : Basic
Neural Network Subroutines https://developer.apple.com/documentation/coreml With Core ML, you can integrate trained machine learning models into your app. Core ML requires the Core ML model format.
CoreML Trained Model Application Keras Train coremltools
What is coremltools?
Convert existing models to .mlmodel format from popular machine learning
tools including Keras, Caffe, scikit-learn, libsvm, and XGBoost. https://pypi.python.org/pypi/coremltools coremltools
CoreML Trained Model Application Keras Train coremltools
(Demo App)
Environment - Tensorflow 1.1.0 (virtualenv) - Keras 1.2.2 - coremltools
0.3.0 - Xcode 9.0 beta ※ Tensorflow, Keras coremltools ͷରԠόʔδϣϯͰ͋Δඞཁ͕͋ΔͷͰগ͠ݹ͍Ͱ͢ɻ
Programs to train neural networks - mnist_mlp.py - mnist_cnn.py ※
Keras ͷ࠷৽όʔδϣϯͷϦϯΫʹͳ͍ͬͯ·͕͢ɺ࣮ࡍόʔδϣϯ 1.2.2 Λࢀর͠·͢ɻ https://github.com/fchollet/keras/tree/master/examples
Convert model with coremltools 1. Import coremltools import coremltools model
= Sequential() … coreml_model = coremltools.converters.keras.convert(model) coreml_model.save("keras_mnist_mlp.mlmodel") 2. Convert model
Import model into Xcode project // 入力データ class keras_mnist_mlpInput :
MLFeatureProvider { var input1: MLMultiArray // … } // 出力データ class keras_mnist_mlpOutput : MLFeatureProvider { var output1: MLMultiArray // … } // モデル @objc class keras_mnist_mlp:NSObject { var model: MLModel init(contentsOf url: URL) throws { self.model = try MLModel(contentsOf: url) } // … func prediction(input: keras_mnist_mlpInput) throws -> keras_mnist_mlpOutput { // … keras_mnist_mlp.mlmodel Λѻ͏ҝͷίʔυ͕ࣗಈੜ͞ΕΔ
Prepare model and input in code // モデルの作成 let model
= keras_mnist_mlp() // 入力データの格納用変数 (入力は28*28の画像) let input = keras_mnist_mlpInput( input1: try! MLMultiArray(shape: [784], dataType: .double) )
Modify input value // 入力データの 0 番目の要素に 1.0 を代入 input.input1[0]
= NSNumber(value: 1.0)
Make a prediction // モデルに入力データを渡して計算 let output = try model.prediction(
input: self.input )
CoreML Trained Model Application Keras Train coremltools Recap
Demo App on Github https://github.com/naru-jpn/MLModelSample
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠