Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CoreMLではじめる機械学習
Search
naru-jpn
June 21, 2017
Technology
0
1.2k
CoreMLではじめる機械学習
Neural Networks on Keras ( TensorFlow backends )
naru-jpn
June 21, 2017
Tweet
Share
More Decks by naru-jpn
See All by naru-jpn
配信アプリのためのリアルタイムプッシュ通知ぼかしの夢
narujpn
3
980
PiPを応用した配信コメントバー機能の開発秘話と技術の詳解 / pip_streaming_comment_bar
narujpn
3
4.5k
Updating an App to Use Swift Concurrency 解説
narujpn
2
360
PiP で実現するミラティブの配信コメントバー / pip-streaming-comment-bar
narujpn
0
1.2k
App Extension のスタックトレース情報からクラッシュを解析/集計する / Analyzing app extension's stack trace
narujpn
3
1.7k
ミラティブとWebRTC - WebRTC framework の中身を覗いてみよう / WebRTC framework AudioUnit Processing
narujpn
1
2.2k
CoreML3のオンデバイストレーニングでつくる母音推定
narujpn
0
460
AltConfと周辺の歩き方
narujpn
0
2k
エンジニア経験を活かしたスクラムマスターとして 開発チームとプロダクトを成長させる
narujpn
1
430
Other Decks in Technology
See All in Technology
直接メモリアクセス
koba789
0
290
寫了幾年 Code,然後呢?軟體工程師必須重新認識的 DevOps
cheng_wei_chen
1
1.3k
研究開発×プロダクトマネジメントへの挑戦 / ly_mlpm_meetup
sansan_randd
0
110
Sansanが実践する Platform EngineeringとSREの協創
sansantech
PRO
2
780
エンジニアリングをやめたくないので問い続ける
estie
2
1.1k
多様なデジタルアイデンティティを攻撃からどうやって守るのか / 20251212
ayokura
0
420
MapKitとオープンデータで実現する地図情報の拡張と可視化
zozotech
PRO
1
130
OCI Oracle Database Services新機能アップデート(2025/09-2025/11)
oracle4engineer
PRO
1
110
[CMU-DB-2025FALL] Apache Fluss - A Streaming Storage for Real-Time Lakehouse
jark
0
110
AI時代の開発フローとともに気を付けたいこと
kkamegawa
0
2.9k
[デモです] NotebookLM で作ったスライドの例
kongmingstrap
0
140
20251209_WAKECareer_生成AIを活用した設計・開発プロセス
syobochim
6
1.5k
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
How to Ace a Technical Interview
jacobian
280
24k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
A designer walks into a library…
pauljervisheath
210
24k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
Docker and Python
trallard
47
3.7k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
720
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.7k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
What's in a price? How to price your products and services
michaelherold
246
12k
Transcript
CoreMLͰ͡ΊΔػցֶश Neural Networks on Keras ( TensorFlow backends ) Timers
inc. / Github: naru-jpn / Twitter: @naruchigi
CoreMLͰ͡ΊΔػցֶश Timers inc. / Github: naru-jpn / Twitter: @naruchigi Neural
Networks on Keras ( TensorFlow backends )
What is Neural Networks?
One of machine learning models. - Neural networks - Tree
ensembles - Support vector machines - Generalized linear models - … https://developer.apple.com/documentation/coreml/converting_trained_models_to_core_ml
What is Keras?
Theano TensorFlow Keras Keras is a high-level neural networks API,
written in Python and capable of running on top of either TensorFlow, CNTK or Theano. https://keras.io
What is CoreML?
Accelerate and BNNS Metal Performance Shaders CoreML BNNS : Basic
Neural Network Subroutines https://developer.apple.com/documentation/coreml With Core ML, you can integrate trained machine learning models into your app. Core ML requires the Core ML model format.
CoreML Trained Model Application Keras Train coremltools
What is coremltools?
Convert existing models to .mlmodel format from popular machine learning
tools including Keras, Caffe, scikit-learn, libsvm, and XGBoost. https://pypi.python.org/pypi/coremltools coremltools
CoreML Trained Model Application Keras Train coremltools
(Demo App)
Environment - Tensorflow 1.1.0 (virtualenv) - Keras 1.2.2 - coremltools
0.3.0 - Xcode 9.0 beta ※ Tensorflow, Keras coremltools ͷରԠόʔδϣϯͰ͋Δඞཁ͕͋ΔͷͰগ͠ݹ͍Ͱ͢ɻ
Programs to train neural networks - mnist_mlp.py - mnist_cnn.py ※
Keras ͷ࠷৽όʔδϣϯͷϦϯΫʹͳ͍ͬͯ·͕͢ɺ࣮ࡍόʔδϣϯ 1.2.2 Λࢀর͠·͢ɻ https://github.com/fchollet/keras/tree/master/examples
Convert model with coremltools 1. Import coremltools import coremltools model
= Sequential() … coreml_model = coremltools.converters.keras.convert(model) coreml_model.save("keras_mnist_mlp.mlmodel") 2. Convert model
Import model into Xcode project // 入力データ class keras_mnist_mlpInput :
MLFeatureProvider { var input1: MLMultiArray // … } // 出力データ class keras_mnist_mlpOutput : MLFeatureProvider { var output1: MLMultiArray // … } // モデル @objc class keras_mnist_mlp:NSObject { var model: MLModel init(contentsOf url: URL) throws { self.model = try MLModel(contentsOf: url) } // … func prediction(input: keras_mnist_mlpInput) throws -> keras_mnist_mlpOutput { // … keras_mnist_mlp.mlmodel Λѻ͏ҝͷίʔυ͕ࣗಈੜ͞ΕΔ
Prepare model and input in code // モデルの作成 let model
= keras_mnist_mlp() // 入力データの格納用変数 (入力は28*28の画像) let input = keras_mnist_mlpInput( input1: try! MLMultiArray(shape: [784], dataType: .double) )
Modify input value // 入力データの 0 番目の要素に 1.0 を代入 input.input1[0]
= NSNumber(value: 1.0)
Make a prediction // モデルに入力データを渡して計算 let output = try model.prediction(
input: self.input )
CoreML Trained Model Application Keras Train coremltools Recap
Demo App on Github https://github.com/naru-jpn/MLModelSample
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠