Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
routing-apiにレコメンド機能を追加する
Search
NearMeの技術発表資料です
PRO
April 21, 2023
Research
0
83
routing-apiにレコメンド機能を追加する
NearMeの技術発表資料です
PRO
April 21, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
実践で使えるtorchのテンソル演算
nearme_tech
PRO
0
6
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
210
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
23
ローカルLLM
nearme_tech
PRO
0
42
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
27
Box-Muller法
nearme_tech
PRO
1
39
Kiro触ってみた
nearme_tech
PRO
0
340
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
580
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
130
Other Decks in Research
See All in Research
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
740
AWSの耐久性のあるRedis互換KVSのMemoryDBについての論文を読んでみた
bootjp
1
370
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
400
Open Gateway 5GC利用への期待と不安
stellarcraft
2
170
音声感情認識技術の進展と展望
nagase
0
420
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
290
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
1.1k
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
220
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
410
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.3k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
120
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
290
Featured
See All Featured
GitHub's CSS Performance
jonrohan
1032
470k
Producing Creativity
orderedlist
PRO
348
40k
HDC tutorial
michielstock
1
280
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
130
BBQ
matthewcrist
89
9.9k
How to train your dragon (web standard)
notwaldorf
97
6.5k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
100
Building Applications with DynamoDB
mza
96
6.9k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
34
Deep Space Network (abreviated)
tonyrice
0
30
Marketing to machines
jonoalderson
1
4.5k
Transcript
0 routing-apiにレコメンド機能を追加する 2023-04-21 第41回NearMe技術勉強会 Yuki Nonaka
1 目次 1. レコメンド機能とは 2. レコメンドの流れ 3. routing-apiの変更すべき点 1
2 お客さんの希望地点から乗車しようとすると、相乗りできない、または相乗りの効 率が悪くなるが、少し離れた地点まで移動してもらうと、効率よく相乗りができるよ うになるというシナリオが想定される。 そこで、routing-apiに上記のシナリオにおいて乗車地点のレコメンドをする機能を 加える。 レコメンド機能とは 2 タクシー経路 レコメンド乗車地点
確定した乗客 不確定の乗客
3 routing-apiにおけるクラスの基礎知識 3 solo_ride solo_ride ride routing_model 最大迂回係数 高速道路の使用の有無 .etc
4 レコメンドの流れ 4 レコメンドする乗車地 点をあらかじめ、いく つか決定する レコメンド地点から目 的地までのダミーの solo_rideを生成す る。
ダミーsolo_rideを add_solo_ride関数 を使って追加する 既存のrideにレコメン ド地点がくっつく
5 レコメンドの流れ 5 計 算 結 果 どのrideにも追加されていない 1つ以上のrideに追加されている レコメンド地点の再検討
or 新しく配車 1つのrideに1つのレコメンド 地点が追加されている 1つのrideに複数のレコメン ド地点が追加されている この結果が欲しい
6 レコメンド地点を最大でも1つしか選択しないために、容量に制約がつく問題 (CVRP)として解を求める。capacity,demandを2次元にすることで、この容量制 約を加える。 変更すべき点 6 capacity:[9,1] demand:[1,0] demand:[1,0] demand:[1,1]
demand:[1,1] demand:[1,1] demand:[1,1]
7 • add_solo_ride関数の引数を複数のsolo_rideにし、まとめて処理する。 ◦ addする順番によって結果が変わらないようになる。 • capacityやdemand変数を2次元に変更する。 ◦ レコメンド地点の情報を詰める。 •
需要のコールバックと容量の制約を加える。 ◦ レコメンド地点を最大でも1つしか回らないようになる。 • ペナルティを与え、レコメンド地点を全て回らなくてもエラーが起きないようにす る。 変更すべき点 7
8 Thank you