Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
routing-apiにレコメンド機能を追加する
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
NearMeの技術発表資料です
PRO
April 21, 2023
Research
0
86
routing-apiにレコメンド機能を追加する
NearMeの技術発表資料です
PRO
April 21, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
Tile38 Overview
nearme_tech
PRO
0
35
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
210
実践で使えるtorchのテンソル演算
nearme_tech
PRO
0
21
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
450
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
34
ローカルLLM
nearme_tech
PRO
0
55
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
34
Box-Muller法
nearme_tech
PRO
1
55
Kiro触ってみた
nearme_tech
PRO
0
410
Other Decks in Research
See All in Research
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
500
Attaques quantiques sur Bitcoin : comment se protéger ?
rlifchitz
0
140
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
170
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
210
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
180
2026年1月の生成AI領域の重要リリース&トピック解説
kajikent
0
420
LiDARセキュリティ最前線(2025年)
kentaroy47
0
140
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
190
財務諸表監査のための逐次検定
masakat0
1
250
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
760
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
580
Featured
See All Featured
Applied NLP in the Age of Generative AI
inesmontani
PRO
4
2.1k
Embracing the Ebb and Flow
colly
88
5k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
67
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
830
Discover your Explorer Soul
emna__ayadi
2
1.1k
Docker and Python
trallard
47
3.7k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.7k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
230
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Transcript
0 routing-apiにレコメンド機能を追加する 2023-04-21 第41回NearMe技術勉強会 Yuki Nonaka
1 目次 1. レコメンド機能とは 2. レコメンドの流れ 3. routing-apiの変更すべき点 1
2 お客さんの希望地点から乗車しようとすると、相乗りできない、または相乗りの効 率が悪くなるが、少し離れた地点まで移動してもらうと、効率よく相乗りができるよ うになるというシナリオが想定される。 そこで、routing-apiに上記のシナリオにおいて乗車地点のレコメンドをする機能を 加える。 レコメンド機能とは 2 タクシー経路 レコメンド乗車地点
確定した乗客 不確定の乗客
3 routing-apiにおけるクラスの基礎知識 3 solo_ride solo_ride ride routing_model 最大迂回係数 高速道路の使用の有無 .etc
4 レコメンドの流れ 4 レコメンドする乗車地 点をあらかじめ、いく つか決定する レコメンド地点から目 的地までのダミーの solo_rideを生成す る。
ダミーsolo_rideを add_solo_ride関数 を使って追加する 既存のrideにレコメン ド地点がくっつく
5 レコメンドの流れ 5 計 算 結 果 どのrideにも追加されていない 1つ以上のrideに追加されている レコメンド地点の再検討
or 新しく配車 1つのrideに1つのレコメンド 地点が追加されている 1つのrideに複数のレコメン ド地点が追加されている この結果が欲しい
6 レコメンド地点を最大でも1つしか選択しないために、容量に制約がつく問題 (CVRP)として解を求める。capacity,demandを2次元にすることで、この容量制 約を加える。 変更すべき点 6 capacity:[9,1] demand:[1,0] demand:[1,0] demand:[1,1]
demand:[1,1] demand:[1,1] demand:[1,1]
7 • add_solo_ride関数の引数を複数のsolo_rideにし、まとめて処理する。 ◦ addする順番によって結果が変わらないようになる。 • capacityやdemand変数を2次元に変更する。 ◦ レコメンド地点の情報を詰める。 •
需要のコールバックと容量の制約を加える。 ◦ レコメンド地点を最大でも1つしか回らないようになる。 • ペナルティを与え、レコメンド地点を全て回らなくてもエラーが起きないようにす る。 変更すべき点 7
8 Thank you