Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
routing-apiにレコメンド機能を追加する
Search
NearMeの技術発表資料です
PRO
April 21, 2023
Research
0
83
routing-apiにレコメンド機能を追加する
NearMeの技術発表資料です
PRO
April 21, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
実践で使えるtorchのテンソル演算
nearme_tech
PRO
0
6
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
210
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
23
ローカルLLM
nearme_tech
PRO
0
43
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
27
Box-Muller法
nearme_tech
PRO
1
39
Kiro触ってみた
nearme_tech
PRO
0
350
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
580
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
130
Other Decks in Research
See All in Research
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
740
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
400
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9.1k
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
12
6.6k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
120
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
220
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
380
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
720
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
600
POI: Proof of Identity
katsyoshi
0
120
Open Gateway 5GC利用への期待と不安
stellarcraft
2
170
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.1k
Featured
See All Featured
Being A Developer After 40
akosma
91
590k
Docker and Python
trallard
47
3.7k
Six Lessons from altMBA
skipperchong
29
4.1k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
34
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
120
Digital Ethics as a Driver of Design Innovation
axbom
PRO
0
130
Ruling the World: When Life Gets Gamed
codingconduct
0
120
ラッコキーワード サービス紹介資料
rakko
0
1.9M
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
350
Documentation Writing (for coders)
carmenintech
77
5.2k
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
130
How GitHub (no longer) Works
holman
316
140k
Transcript
0 routing-apiにレコメンド機能を追加する 2023-04-21 第41回NearMe技術勉強会 Yuki Nonaka
1 目次 1. レコメンド機能とは 2. レコメンドの流れ 3. routing-apiの変更すべき点 1
2 お客さんの希望地点から乗車しようとすると、相乗りできない、または相乗りの効 率が悪くなるが、少し離れた地点まで移動してもらうと、効率よく相乗りができるよ うになるというシナリオが想定される。 そこで、routing-apiに上記のシナリオにおいて乗車地点のレコメンドをする機能を 加える。 レコメンド機能とは 2 タクシー経路 レコメンド乗車地点
確定した乗客 不確定の乗客
3 routing-apiにおけるクラスの基礎知識 3 solo_ride solo_ride ride routing_model 最大迂回係数 高速道路の使用の有無 .etc
4 レコメンドの流れ 4 レコメンドする乗車地 点をあらかじめ、いく つか決定する レコメンド地点から目 的地までのダミーの solo_rideを生成す る。
ダミーsolo_rideを add_solo_ride関数 を使って追加する 既存のrideにレコメン ド地点がくっつく
5 レコメンドの流れ 5 計 算 結 果 どのrideにも追加されていない 1つ以上のrideに追加されている レコメンド地点の再検討
or 新しく配車 1つのrideに1つのレコメンド 地点が追加されている 1つのrideに複数のレコメン ド地点が追加されている この結果が欲しい
6 レコメンド地点を最大でも1つしか選択しないために、容量に制約がつく問題 (CVRP)として解を求める。capacity,demandを2次元にすることで、この容量制 約を加える。 変更すべき点 6 capacity:[9,1] demand:[1,0] demand:[1,0] demand:[1,1]
demand:[1,1] demand:[1,1] demand:[1,1]
7 • add_solo_ride関数の引数を複数のsolo_rideにし、まとめて処理する。 ◦ addする順番によって結果が変わらないようになる。 • capacityやdemand変数を2次元に変更する。 ◦ レコメンド地点の情報を詰める。 •
需要のコールバックと容量の制約を加える。 ◦ レコメンド地点を最大でも1つしか回らないようになる。 • ペナルティを与え、レコメンド地点を全て回らなくてもエラーが起きないようにす る。 変更すべき点 7
8 Thank you