Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
時系列クラスタリング
Search
NearMeの技術発表資料です
PRO
October 28, 2022
0
480
時系列クラスタリング
NearMeの技術発表資料です
PRO
October 28, 2022
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
82
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
18
ローカルLLM
nearme_tech
PRO
0
32
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
19
Box-Muller法
nearme_tech
PRO
1
34
Kiro触ってみた
nearme_tech
PRO
0
250
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
520
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
120
強化学習アルゴリズムPPOの改善案を考えてみた
nearme_tech
PRO
0
79
Featured
See All Featured
Become a Pro
speakerdeck
PRO
31
5.7k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
The Invisible Side of Design
smashingmag
302
51k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Designing Experiences People Love
moore
143
24k
The Pragmatic Product Professional
lauravandoore
37
7.1k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
100
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Designing for humans not robots
tammielis
254
26k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
390
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
Transcript
0 時系列クラスタリング 2022-10-28 第19回NearMe技術勉強会 Hazuki / Shibayama
1 目次 1. 時系列データとは 2. クラスタリングとは 3. 時系列クラスタリングの種類 4. 時系列データの類似性
2 時系列データとは • 時系列データ 時間的な変化を、連続的に観測して得られた値の系列 例: ◦ 金融ー株価、為替レート ◦
生物学ー遺伝子発現データ ◦ 医学ー血圧、心電図 ◦ 生産物流ー需要、売上、生産 etc
3 クラスタリングとは • クラスタリング 類似したデータを関連するグループまたは同種のグループに分ける ◦ 非階層 K-means、pLSI、SOM etc ◦
階層 ウォード法、群平均法 etc • 時系列クラスタリング 似ている時系列データを分ける
4 • 時系列クラスタリング ◦ 形状ベース 時系列データそのものをクラスタリング ◦ 特徴ベース 時系列データを低次元の特徴量ベクトルに落とし込んでからクラスタリング ◦
モデルベース 時系列データをパラメトリックなモデルのパラメータに変換して、 複数のパラメータに対してクラスタリング手法を用いてクラスタリング 時系列クラスタリングの種類
5 時系列データの類似性 • 各時刻における系列値 ◦ ユークリッド距離→短期データ向き • 系列の形状 ◦ DTW(Dynamic
Time Warping) →短期データ向き • 系列の変化の特徴 ◦ モデルのパラメータや特徴量等で 類似度を測定 →長期データ向き 形も時点も一緒 形は似ているが、ずれている 何をもとに2つの時系列が似ているとするのか? 自己回帰のパターン、 トレンドや周期等が似ている
6 Aghabozorgi, S., Shirkhorshidi, A.S., and Wah, T.Y. (2015) Time-series
clustering – A decade review. Information Systems, 53, 16-38. 参考文献
7 Thank you