Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
時系列クラスタリング
Search
NearMeの技術発表資料です
PRO
October 28, 2022
0
470
時系列クラスタリング
NearMeの技術発表資料です
PRO
October 28, 2022
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
6
Box-Muller法
nearme_tech
PRO
1
17
Kiro触ってみた
nearme_tech
PRO
0
54
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
390
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
98
強化学習アルゴリズムPPOの改善案を考えてみた
nearme_tech
PRO
0
38
Apple Containerについて調べて触ってみた
nearme_tech
PRO
0
460
Rust 並列強化学習
nearme_tech
PRO
0
33
並列で⽣成AIにコーディングをやらせる
nearme_tech
PRO
1
240
Featured
See All Featured
Side Projects
sachag
455
43k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Typedesign – Prime Four
hannesfritz
42
2.8k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
How to Ace a Technical Interview
jacobian
280
24k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Faster Mobile Websites
deanohume
310
31k
Java REST API Framework Comparison - PWX 2021
mraible
34
8.9k
Building a Modern Day E-commerce SEO Strategy
aleyda
44
7.9k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
Transcript
0 時系列クラスタリング 2022-10-28 第19回NearMe技術勉強会 Hazuki / Shibayama
1 目次 1. 時系列データとは 2. クラスタリングとは 3. 時系列クラスタリングの種類 4. 時系列データの類似性
2 時系列データとは • 時系列データ 時間的な変化を、連続的に観測して得られた値の系列 例: ◦ 金融ー株価、為替レート ◦
生物学ー遺伝子発現データ ◦ 医学ー血圧、心電図 ◦ 生産物流ー需要、売上、生産 etc
3 クラスタリングとは • クラスタリング 類似したデータを関連するグループまたは同種のグループに分ける ◦ 非階層 K-means、pLSI、SOM etc ◦
階層 ウォード法、群平均法 etc • 時系列クラスタリング 似ている時系列データを分ける
4 • 時系列クラスタリング ◦ 形状ベース 時系列データそのものをクラスタリング ◦ 特徴ベース 時系列データを低次元の特徴量ベクトルに落とし込んでからクラスタリング ◦
モデルベース 時系列データをパラメトリックなモデルのパラメータに変換して、 複数のパラメータに対してクラスタリング手法を用いてクラスタリング 時系列クラスタリングの種類
5 時系列データの類似性 • 各時刻における系列値 ◦ ユークリッド距離→短期データ向き • 系列の形状 ◦ DTW(Dynamic
Time Warping) →短期データ向き • 系列の変化の特徴 ◦ モデルのパラメータや特徴量等で 類似度を測定 →長期データ向き 形も時点も一緒 形は似ているが、ずれている 何をもとに2つの時系列が似ているとするのか? 自己回帰のパターン、 トレンドや周期等が似ている
6 Aghabozorgi, S., Shirkhorshidi, A.S., and Wah, T.Y. (2015) Time-series
clustering – A decade review. Information Systems, 53, 16-38. 参考文献
7 Thank you