Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
時系列クラスタリング
Search
NearMeの技術発表資料です
PRO
October 28, 2022
0
460
時系列クラスタリング
NearMeの技術発表資料です
PRO
October 28, 2022
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
3
250
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
80
強化学習アルゴリズムPPOの改善案を考えてみた
nearme_tech
PRO
0
8
Apple Containerについて調べて触ってみた
nearme_tech
PRO
0
150
Rust 並列強化学習
nearme_tech
PRO
0
24
並列で⽣成AIにコーディングをやらせる
nearme_tech
PRO
1
150
希望休勤務を考慮したシフト作成
nearme_tech
PRO
0
40
Hub Labeling による高速経路探索
nearme_tech
PRO
0
100
Build an AI agent with Mastra
nearme_tech
PRO
0
84
Featured
See All Featured
A better future with KSS
kneath
239
17k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
GraphQLとの向き合い方2022年版
quramy
49
14k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.1k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
Building an army of robots
kneath
306
46k
The Straight Up "How To Draw Better" Workshop
denniskardys
236
140k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
3k
Done Done
chrislema
185
16k
Transcript
0 時系列クラスタリング 2022-10-28 第19回NearMe技術勉強会 Hazuki / Shibayama
1 目次 1. 時系列データとは 2. クラスタリングとは 3. 時系列クラスタリングの種類 4. 時系列データの類似性
2 時系列データとは • 時系列データ 時間的な変化を、連続的に観測して得られた値の系列 例: ◦ 金融ー株価、為替レート ◦
生物学ー遺伝子発現データ ◦ 医学ー血圧、心電図 ◦ 生産物流ー需要、売上、生産 etc
3 クラスタリングとは • クラスタリング 類似したデータを関連するグループまたは同種のグループに分ける ◦ 非階層 K-means、pLSI、SOM etc ◦
階層 ウォード法、群平均法 etc • 時系列クラスタリング 似ている時系列データを分ける
4 • 時系列クラスタリング ◦ 形状ベース 時系列データそのものをクラスタリング ◦ 特徴ベース 時系列データを低次元の特徴量ベクトルに落とし込んでからクラスタリング ◦
モデルベース 時系列データをパラメトリックなモデルのパラメータに変換して、 複数のパラメータに対してクラスタリング手法を用いてクラスタリング 時系列クラスタリングの種類
5 時系列データの類似性 • 各時刻における系列値 ◦ ユークリッド距離→短期データ向き • 系列の形状 ◦ DTW(Dynamic
Time Warping) →短期データ向き • 系列の変化の特徴 ◦ モデルのパラメータや特徴量等で 類似度を測定 →長期データ向き 形も時点も一緒 形は似ているが、ずれている 何をもとに2つの時系列が似ているとするのか? 自己回帰のパターン、 トレンドや周期等が似ている
6 Aghabozorgi, S., Shirkhorshidi, A.S., and Wah, T.Y. (2015) Time-series
clustering – A decade review. Information Systems, 53, 16-38. 参考文献
7 Thank you