Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
中心極限定理
Search
NearMeの技術発表資料です
PRO
July 07, 2023
Science
0
230
中心極限定理
NearMeの技術発表資料です
PRO
July 07, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
81
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
18
ローカルLLM
nearme_tech
PRO
0
32
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
19
Box-Muller法
nearme_tech
PRO
1
34
Kiro触ってみた
nearme_tech
PRO
0
250
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
520
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
120
強化学習アルゴリズムPPOの改善案を考えてみた
nearme_tech
PRO
0
78
Other Decks in Science
See All in Science
mOrganic™ Holdings, LLC.
hyperlocalnetwork
0
210
HajimetenoLT vol.17
hashimoto_kei
1
110
Accelerated Computing for Climate forecast
inureyes
PRO
0
140
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.2k
白金鉱業Vol.21【初学者向け発表枠】身近な例から学ぶ数理最適化の基礎 / Learning the Basics of Mathematical Optimization Through Everyday Examples
brainpadpr
1
430
2025-06-11-ai_belgium
sofievl
1
210
データベース08: 実体関連モデルとは?
trycycle
PRO
0
1k
Accelerating operator Sinkhorn iteration with overrelaxation
tasusu
0
120
知能とはなにかーヒトとAIのあいだー
tagtag
0
160
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
440
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
900
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
130
Featured
See All Featured
GraphQLとの向き合い方2022年版
quramy
50
14k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Why Our Code Smells
bkeepers
PRO
340
57k
Scaling GitHub
holman
464
140k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Embracing the Ebb and Flow
colly
88
4.9k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Code Review Best Practice
trishagee
74
19k
Music & Morning Musume
bryan
46
7k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.7k
Transcript
0 中心極限定理 2023-07-07 第51回NearMe技術勉強会 Futo Ueno
1 Introduction • 中心極限定理は、統計学において極めて重要である • 中身は意外と難しい • 定理を完全に理解し、必要になったときに安心して使えるようにする
2 定理の主張 中心極限定理 ([倉田, 星野]「入門統計解析」より引用)
3 定理の主張 中心極限定理 このままでも実用上は特に困らないが・・・
4 定理の主張 (気になる点①) 中心極限定理 このままでも実用上は特に困らないが・・・ ・「ある分布」が「ある分布」に近づくとは?
5 分布収束 定義
6 分布収束 定義 ※ 確率密度関数を使うのはどうか?
7 分布収束 定義 ※ 確率密度関数を使うのはどうか? → 存在しない場合がある
8 定理の主張 (気になる点①) 中心極限定理 このままでも実用上は特に困らないが・・・ ・「ある分布」が「ある分布」に近づくとは? → done
9 定理の主張 (気になる点②) 中心極限定理 このままでも実用上は特に困らないが・・・ ・「ある分布」が「ある分布」に近づくとは? → done ・収束先がnに依存しているようにみえるのが少々気持ち悪い
10 修正(直観)
11 修正(直観) n大
12 修正(直観) n大 スライド
13 修正(直観) n大 スライド √n 倍
14 修正(式)
15 定理の主張 中心極限定理 中心極限定理 (厳密ver.)
16 定理の主張 中心極限定理 中心極限定理 (厳密ver.) ?
17 中心極限定理の証明
18 準備1 : 特性関数 定義
19 準備1 : 特性関数 定義 (cf.) モーメント母関数
20 準備1 : 特性関数の例
21 準備1 : 特性関数の例 (ほぼ)ガウス関数→
22 準備2 : 特性関数の性質
23 準備2 : 特性関数の性質 分布関数と特性関数が1対1対応!!!
24 準備2 : 特性関数の性質 分布関数と特性関数が1対1対応!!! (→ 分布関数を考えたくないときに特性関数に逃げることが可能)
25 準備3 : Lévyの連続性定理
26 準備3 : Lévyの連続性定理 対応 対応
27 準備3 : Lévyの連続性定理 連続?
28 準備3 : Lévyの連続性定理 連続?
29 準備3 : Lévyの連続性定理 連続?
30 準備3 : Lévyの連続性定理 連続? ※イメージ
31 証明の方針
32 証明の方針 対応
33 証明の方針 対応
34 証明の方針 対応 対応(?)
35 証明の方針 Lévyの連続性定理 対応 対応(?)
36 証明の方針 Lévyの連続性定理 対応 対応(?)
37 証明 (cf.)
38 証明
39 証明
40 証明 (cf.)
41 証明 (cf.)
42 準備1 : 特性関数の例(再掲) (ほぼ)ガウス関数→
43 証明 (cf.)
44 証明 (cf.)
45 証明の方針(再掲) 対応 対応(?)
46 証明の方針(再掲) 対応 対応(?) → 対応!
47 証明の方針(再掲) Lévyの連続性定理 対応 対応(?) → 対応!
48 証明の方針(再掲) Lévyの連続性定理 対応 対応(?) → 対応!
49 証明の方針(再掲) Lévyの連続性定理 対応 対応(?) → 対応!
50 参考文献 ・佐藤坦:「はじめての確率論 測度から確率へ」. 共立出版, 1994. ・倉田博史, 星野崇弘:「入門統計解析」. 新世社, 2009.
51 Thank you