$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
中心極限定理
Search
NearMeの技術発表資料です
PRO
July 07, 2023
Science
0
230
中心極限定理
NearMeの技術発表資料です
PRO
July 07, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
実践で使えるtorchのテンソル演算
nearme_tech
PRO
0
4
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
160
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
22
ローカルLLM
nearme_tech
PRO
0
41
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
26
Box-Muller法
nearme_tech
PRO
1
38
Kiro触ってみた
nearme_tech
PRO
0
310
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
560
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
130
Other Decks in Science
See All in Science
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
170
コミュニティサイエンスの実践@日本認知科学会2025
hayataka88
0
110
先端因果推論特別研究チームの研究構想と 人間とAIが協働する自律因果探索の展望
sshimizu2006
3
610
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
0
130
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.8k
あなたに水耕栽培を愛していないとは言わせない
mutsumix
1
140
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
590
力学系から見た現代的な機械学習
hanbao
3
3.7k
なぜ21は素因数分解されないのか? - Shorのアルゴリズムの現在と壁
daimurat
0
240
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
320
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
140
Featured
See All Featured
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.4k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
750
Thoughts on Productivity
jonyablonski
73
5k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
The agentic SEO stack - context over prompts
schlessera
0
560
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
680
How to Ace a Technical Interview
jacobian
281
24k
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
400
So, you think you're a good person
axbom
PRO
0
1.8k
Test your architecture with Archunit
thirion
1
2.1k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Are puppies a ranking factor?
jonoalderson
0
2.4k
Transcript
0 中心極限定理 2023-07-07 第51回NearMe技術勉強会 Futo Ueno
1 Introduction • 中心極限定理は、統計学において極めて重要である • 中身は意外と難しい • 定理を完全に理解し、必要になったときに安心して使えるようにする
2 定理の主張 中心極限定理 ([倉田, 星野]「入門統計解析」より引用)
3 定理の主張 中心極限定理 このままでも実用上は特に困らないが・・・
4 定理の主張 (気になる点①) 中心極限定理 このままでも実用上は特に困らないが・・・ ・「ある分布」が「ある分布」に近づくとは?
5 分布収束 定義
6 分布収束 定義 ※ 確率密度関数を使うのはどうか?
7 分布収束 定義 ※ 確率密度関数を使うのはどうか? → 存在しない場合がある
8 定理の主張 (気になる点①) 中心極限定理 このままでも実用上は特に困らないが・・・ ・「ある分布」が「ある分布」に近づくとは? → done
9 定理の主張 (気になる点②) 中心極限定理 このままでも実用上は特に困らないが・・・ ・「ある分布」が「ある分布」に近づくとは? → done ・収束先がnに依存しているようにみえるのが少々気持ち悪い
10 修正(直観)
11 修正(直観) n大
12 修正(直観) n大 スライド
13 修正(直観) n大 スライド √n 倍
14 修正(式)
15 定理の主張 中心極限定理 中心極限定理 (厳密ver.)
16 定理の主張 中心極限定理 中心極限定理 (厳密ver.) ?
17 中心極限定理の証明
18 準備1 : 特性関数 定義
19 準備1 : 特性関数 定義 (cf.) モーメント母関数
20 準備1 : 特性関数の例
21 準備1 : 特性関数の例 (ほぼ)ガウス関数→
22 準備2 : 特性関数の性質
23 準備2 : 特性関数の性質 分布関数と特性関数が1対1対応!!!
24 準備2 : 特性関数の性質 分布関数と特性関数が1対1対応!!! (→ 分布関数を考えたくないときに特性関数に逃げることが可能)
25 準備3 : Lévyの連続性定理
26 準備3 : Lévyの連続性定理 対応 対応
27 準備3 : Lévyの連続性定理 連続?
28 準備3 : Lévyの連続性定理 連続?
29 準備3 : Lévyの連続性定理 連続?
30 準備3 : Lévyの連続性定理 連続? ※イメージ
31 証明の方針
32 証明の方針 対応
33 証明の方針 対応
34 証明の方針 対応 対応(?)
35 証明の方針 Lévyの連続性定理 対応 対応(?)
36 証明の方針 Lévyの連続性定理 対応 対応(?)
37 証明 (cf.)
38 証明
39 証明
40 証明 (cf.)
41 証明 (cf.)
42 準備1 : 特性関数の例(再掲) (ほぼ)ガウス関数→
43 証明 (cf.)
44 証明 (cf.)
45 証明の方針(再掲) 対応 対応(?)
46 証明の方針(再掲) 対応 対応(?) → 対応!
47 証明の方針(再掲) Lévyの連続性定理 対応 対応(?) → 対応!
48 証明の方針(再掲) Lévyの連続性定理 対応 対応(?) → 対応!
49 証明の方針(再掲) Lévyの連続性定理 対応 対応(?) → 対応!
50 参考文献 ・佐藤坦:「はじめての確率論 測度から確率へ」. 共立出版, 1994. ・倉田博史, 星野崇弘:「入門統計解析」. 新世社, 2009.
51 Thank you