Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
中心極限定理
Search
NearMeの技術発表資料です
PRO
July 07, 2023
Science
0
230
中心極限定理
NearMeの技術発表資料です
PRO
July 07, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
実践で使えるtorchのテンソル演算
nearme_tech
PRO
0
4
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
170
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
22
ローカルLLM
nearme_tech
PRO
0
41
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
26
Box-Muller法
nearme_tech
PRO
1
38
Kiro触ってみた
nearme_tech
PRO
0
310
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
560
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
130
Other Decks in Science
See All in Science
HajimetenoLT vol.17
hashimoto_kei
1
150
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
データマイニング - グラフデータと経路
trycycle
PRO
1
260
高校生就活へのDA導入の提案
shunyanoda
0
6.1k
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
130
コミュニティサイエンスの実践@日本認知科学会2025
hayataka88
0
110
Celebrate UTIG: Staff and Student Awards 2025
utig
0
400
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
460
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
130
Accelerating operator Sinkhorn iteration with overrelaxation
tasusu
0
140
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
2
1.5k
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
400
Featured
See All Featured
A better future with KSS
kneath
240
18k
The browser strikes back
jonoalderson
0
120
Scaling GitHub
holman
464
140k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
38
So, you think you're a good person
axbom
PRO
0
1.8k
Done Done
chrislema
186
16k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
0
170
First, design no harm
axbom
PRO
1
1.1k
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.1k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
A designer walks into a library…
pauljervisheath
210
24k
SEO for Brand Visibility & Recognition
aleyda
0
4.1k
Transcript
0 中心極限定理 2023-07-07 第51回NearMe技術勉強会 Futo Ueno
1 Introduction • 中心極限定理は、統計学において極めて重要である • 中身は意外と難しい • 定理を完全に理解し、必要になったときに安心して使えるようにする
2 定理の主張 中心極限定理 ([倉田, 星野]「入門統計解析」より引用)
3 定理の主張 中心極限定理 このままでも実用上は特に困らないが・・・
4 定理の主張 (気になる点①) 中心極限定理 このままでも実用上は特に困らないが・・・ ・「ある分布」が「ある分布」に近づくとは?
5 分布収束 定義
6 分布収束 定義 ※ 確率密度関数を使うのはどうか?
7 分布収束 定義 ※ 確率密度関数を使うのはどうか? → 存在しない場合がある
8 定理の主張 (気になる点①) 中心極限定理 このままでも実用上は特に困らないが・・・ ・「ある分布」が「ある分布」に近づくとは? → done
9 定理の主張 (気になる点②) 中心極限定理 このままでも実用上は特に困らないが・・・ ・「ある分布」が「ある分布」に近づくとは? → done ・収束先がnに依存しているようにみえるのが少々気持ち悪い
10 修正(直観)
11 修正(直観) n大
12 修正(直観) n大 スライド
13 修正(直観) n大 スライド √n 倍
14 修正(式)
15 定理の主張 中心極限定理 中心極限定理 (厳密ver.)
16 定理の主張 中心極限定理 中心極限定理 (厳密ver.) ?
17 中心極限定理の証明
18 準備1 : 特性関数 定義
19 準備1 : 特性関数 定義 (cf.) モーメント母関数
20 準備1 : 特性関数の例
21 準備1 : 特性関数の例 (ほぼ)ガウス関数→
22 準備2 : 特性関数の性質
23 準備2 : 特性関数の性質 分布関数と特性関数が1対1対応!!!
24 準備2 : 特性関数の性質 分布関数と特性関数が1対1対応!!! (→ 分布関数を考えたくないときに特性関数に逃げることが可能)
25 準備3 : Lévyの連続性定理
26 準備3 : Lévyの連続性定理 対応 対応
27 準備3 : Lévyの連続性定理 連続?
28 準備3 : Lévyの連続性定理 連続?
29 準備3 : Lévyの連続性定理 連続?
30 準備3 : Lévyの連続性定理 連続? ※イメージ
31 証明の方針
32 証明の方針 対応
33 証明の方針 対応
34 証明の方針 対応 対応(?)
35 証明の方針 Lévyの連続性定理 対応 対応(?)
36 証明の方針 Lévyの連続性定理 対応 対応(?)
37 証明 (cf.)
38 証明
39 証明
40 証明 (cf.)
41 証明 (cf.)
42 準備1 : 特性関数の例(再掲) (ほぼ)ガウス関数→
43 証明 (cf.)
44 証明 (cf.)
45 証明の方針(再掲) 対応 対応(?)
46 証明の方針(再掲) 対応 対応(?) → 対応!
47 証明の方針(再掲) Lévyの連続性定理 対応 対応(?) → 対応!
48 証明の方針(再掲) Lévyの連続性定理 対応 対応(?) → 対応!
49 証明の方針(再掲) Lévyの連続性定理 対応 対応(?) → 対応!
50 参考文献 ・佐藤坦:「はじめての確率論 測度から確率へ」. 共立出版, 1994. ・倉田博史, 星野崇弘:「入門統計解析」. 新世社, 2009.
51 Thank you