Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ルートの質を評価する指標について
Search
NearMeの技術発表資料です
PRO
February 28, 2025
0
10
ルートの質を評価する指標について
NearMeの技術発表資料です
PRO
February 28, 2025
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
Rustで作る強化学習エージェント
nearme_tech
PRO
0
37
ビームサーチ
nearme_tech
PRO
0
34
WASM入門
nearme_tech
PRO
0
33
ESLintをもっと有効活用しよう
nearme_tech
PRO
0
25
リファクタリングのための第一歩
nearme_tech
PRO
0
68
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
190
確率的プログラミング入門
nearme_tech
PRO
2
120
Observability and OpenTelemetry
nearme_tech
PRO
2
45
観察研究における因果推論
nearme_tech
PRO
1
160
Featured
See All Featured
The Cult of Friendly URLs
andyhume
78
6.2k
GraphQLとの向き合い方2022年版
quramy
44
14k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.3k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
BBQ
matthewcrist
87
9.5k
Into the Great Unknown - MozCon
thekraken
35
1.6k
A Tale of Four Properties
chriscoyier
158
23k
Building an army of robots
kneath
303
45k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
The Language of Interfaces
destraynor
156
24k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
Transcript
1 2025-02-28 第114回NearMe技術勉強会 Futo Ueno ルートの質を評価する指標について
2 背景 ‧タスクでrouting-apiのパラメータチューニングについて考えていた ‧UXと相乗り数(GpT)はトレードオフの関係にある → UXとGpTのバランスが良いパラメータを探索したい UXの良さとは? → UXのうち「ルートの質」を定量化する⽅法についてお話しします
3 ルートの質 start end pick up start end pick up
start end pick up ⾃然なルートで 相乗りできている やや不⾃然
4 フレシェ距離 X, Y : 0 ≤ t ≤ 1でパラメータ付けられた曲線
α, β : [0, 1]から[0, 1]への単調⾮減少な再パラメータ付け d(‧, ‧) : ユークリッド距離
5 フレシェ距離 X, Y : 0 ≤ t ≤ 1でパラメータ付けられた曲線
→ ルート α, β : [0, 1]から[0, 1]への単調⾮減少な再パラメータ付け → 歩き⽅ d(‧, ‧) : ユークリッド距離 → 普通の距離
6 フレシェ距離の解釈 ⽚⽅が直線だとわかりやすい おそらくこの辺り 「曲線X, Y上をなるべく離れないように歩いた時に、どうしても離れてしまう距離」
7 フレシェ距離によるルートの質の評価 start end pick up start end pick up
start end pick up フレシェ距離 ⼩ フレシェ距離 ⼤ フレシェ距離 ⼤?
8 フレシェ距離の弱点① ‧使う道路が変わると必然的にフレシェ距 離は⼤きくなる ‧使う道路が変わってもルートの質に⼤き く差が⽣じない場合であっても、フレシェ 距離には「異常」として反映されてしまう start end ⾼速
1 ⾼速 2 ⼀般道 + ⾼速
9 フレシェ距離の弱点② start end pick up start end pick up
start end pick up ⽬的地から遠ざかっている ⾏ったり来たりしている ⾃然 → これらのフレシェ距離はそれほど⼤きな値にはならず、⾃然な相乗りとの区別がつかない
10 Geodesic Tortuosity start end ‧始点から終点まで辿り着くために必要な 「最⼩限の移動量」が直線距離 ‧あるルートによる「実際の移動量」が 「最⼩限の移動量」に⽐べてどのくらい嵩んで しまうかを表している
𝑙 𝑅
11 GT による評価 start end pick up 𝑅!"#$% 𝑅!&'& 𝑙
12 GTによる評価 start end 𝑅!"#$% pick up 𝑅!&'& ‧ルートの⻑さに差がなければGTにも 差は⽣じない
→ 使う道路が違ってもルートの質が 同⽔準であることを捉えられている
13 start end pick up start end pick up end
⽬的地から遠ざかっている ⾏ったり来たりしている ⾃然 →⽬的地から遠ざかったり⾏ったり来たりするとGTは悪化する GTによる評価 pick up start
14 「迂回係数」との⽐較 ←概ね連動しているが、 迂回係数が⼤きくなるにつ れて差が⽣じている
15 「迂回係数」との⽐較 → 「元々のルートのGT」 が反映されている
16 今後の課題 ‧時間的な質を反映させた指標 ‧最適化に組み込む (制約や⽬的関数) ‧⽬的地から遠ざかったり⾏ったり来たりする部分を 「強調」するような形に拡張 → ルートの異常検知
17 references ‧https://mist.math.chalmers.se/geodesic-tortuosity/ ‧https://www.researchgate.net/figure/Definition-of-the-geodesic- tortuosity_fig16_312874680
18 Thank you