Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Testing Research Software
Search
Nikoleta
March 14, 2017
Programming
0
320
Testing Research Software
Slides for the talk Writing tests for research software for PyCon Namibia 2017
Nikoleta
March 14, 2017
Tweet
Share
More Decks by Nikoleta
See All by Nikoleta
A trip to earth science with python as a companion
nikoletav3
0
50
Arcas: Using Python to access open research literature
nikoletav3
1
180
Optimisation of short memory strategies in the Iterated Prisoners Dilemma
nikoletav3
0
56
Arcas
nikoletav3
0
490
SSI Selection Day
nikoletav3
0
410
SWORDS-03-10-2016
nikoletav3
0
51
PyCon UK 2016
nikoletav3
0
160
Other Decks in Programming
See All in Programming
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
0
790
SourceGeneratorのススメ
htkym
0
170
Data-Centric Kaggle
isax1015
2
730
CSC307 Lecture 01
javiergs
PRO
0
680
Automatic Grammar Agreementと Markdown Extended Attributes について
kishikawakatsumi
0
180
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
6
1.7k
ELYZA_Findy AI Engineering Summit登壇資料_AIコーディング時代に「ちゃんと」やること_toB LLMプロダクト開発舞台裏_20251216
elyza
2
1.3k
AgentCoreとHuman in the Loop
har1101
5
200
OSSとなったswift-buildで Xcodeのビルドを差し替えられるため 自分でXcodeを直せる時代になっている ダイアモンド問題編
yimajo
3
580
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
100
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
260
Basic Architectures
denyspoltorak
0
650
Featured
See All Featured
Building the Perfect Custom Keyboard
takai
2
680
Optimizing for Happiness
mojombo
379
71k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
76
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
110
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Rails Girls Zürich Keynote
gr2m
96
14k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
87
How STYLIGHT went responsive
nonsquared
100
6k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
55
49k
How to Talk to Developers About Accessibility
jct
2
120
Thoughts on Productivity
jonyablonski
74
5k
Transcript
Writing tests for research software @NikoletaGlyn
None
TESTING
0, 1, 1, 2, 3, 5, 8, 13, 21, 34
...
F0 = 0 F1 = 1 Fn = Fn−1 +
Fn−2
main.py def fib(n): if n == 0: return 0 if
n == 1: return 1 return 2 * fib(n - 1)
n 2 3 4 . . . 16 17 18
Fn 1 2 3 . . . 987 1597 2584 Fn−1 1 1 2 . . . 610 987 1597 Fn Fn−1 1.000 2.000 1.500 . . . 1.618 1.618 1.618
n 2 3 4 . . . 16 17 18
Fn 1 2 3 . . . 987 1597 2584 Fn−1 1 1 2 . . . 610 987 1597 Fn Fn−1 1.000 2.000 1.500 . . . 1.618 1.618 1.618 φ 1.61803...
. |-- main.py |-- golden.py
golden.py import main for n in range(10, 100000): golden_ratio =
fib(n) / fib(n - 1) print(golden_ratio)
golden.py import main for n in range(10, 100000): golden_ratio =
fib(n) / fib(n - 1) print(golden_ratio) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ...
golden.py import main for n in range(10, 100000): golden_ratio =
fib(n) / fib(n - 1) print(golden_ratio) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ... Glynatsi 2017, “SOLVES THE FIBONACCI MYSTERY”
WRITE REVIEW PUBLISH
20% OF GENETIC RESEARCH IS WRONG Gene name errors are
widespread in the scientific literature by Mark Ziemann, Yotam Eren and Assam El-Osta
INDUSTRY
INDUSTRY AMAZON
. |-- main.py |-- golden.py |-- test_main.py
test main.py import unittest import main class TestExample(unittest.TestCase): def test_initial(self):
self.assertEqual(fib(0), 0) self.assertEqual(fib(1), 1) def test_fib(self): self.assertEqual(fib(2), 1) self.assertEqual(fib(3), 2)
test main.py import unittest import main class TestExample(unittest.TestCase): def test_initial(self):
self.assertEqual(fib(0), 0) self.assertEqual(fib(1), 1) def test_fib(self): self.assertEqual(fib(2), 1) self.assertEqual(fib(3), 2) python -m unittest test_main.py
test main.py import unittest import main class TestExample(unittest.TestCase): def test_initial(self):
self.assertEqual(fib(0), 0) self.assertEqual(fib(1), 1) def test_fib(self): self.assertEqual(fib(2), 1) self.assertEqual(fib(3), 2) python -m unittest test_main.py self.assertEqual(fib(2), 1) AssertionError: 2 != 1 ----------------------------- Ran 2 tests in 0.000s FAILED (failures=1)
main.py def fib(n): if n == 0: return 0 if
n == 1: return 1 return 2 * fib(n - 1)
main.py def fib(n): if n == 0: return 0 if
n == 1: return 1 return fib(n - 1) + fib(n - 2)
main.py def fib(n): if n == 0: return 0 if
n == 1: return 1 return fib(n - 1) + fib(n - 2) python -m unittest test_main.py ------------------------------- Ran 2 tests in 0.000s OK
main.py def fib(n): if n == 0: return 0 if
n == 1: return 1 return fib(n - 1) + fib(n - 2) python -m unittest test_main.py ------------------------------- Ran 2 tests in 0.000s OK Glynatsi 2017, “TRYING TO RECLAIM REPUTATION”
Doc Testing
main.py import unittest def fib(n): """Returns the n th fibonacci
number. For example: >>> fib(5) 5 >>> fib(6) 8 >>> fib(5) + fib(6) 13 >>> fib(7) 10 """ if n == 0: return 0 elif n == 1: return 1 else: return fib(n - 1) + fib(n - 2)
python -m doctest main.py Failed example: fib(7) Expected: 10 Got:
13 **************************** 1 items had failures: 1 of 4 in main.fib ***Test Failed*** 1 failures.
main.py import unittest def fib(n): """Returns the n th fibonacci
number. For example: >>> fib(5) 5 >>> fib(6) 8 >>> fib(5) + fib(6) 13 >>> fib(7) 13 """ if n == 0: return 0 elif n == 1: return 1 else: return fib(n - 1) + fib(n - 2)
Property Based Testing
from hypothesis import given from hypothesis.strategies import integers class TestFib(unittest.TestCase):
@given(k=integers(min_value=2)) def test_fib(self, k): self.assertTrue(fib(k), fib(k - 1) + fib(k - 2)) https://github.com/HypothesisWorks @DRMacIver
It’s impossible to conduct research without software, say 7 out
of 10 UK researchers Simon Hettrick uk/blog/2016-09-12-its-impossible-conduct-research-without-out-10-uk- researchers
USE 92%
IMPOSSIBLE 69%
DEVELOP 56%
TRAINING 79%
USE 92% IMPOSSIBLE 69% DEVELOP 56% TRAINING 79%
Axelrod : https://github.com/Axelrod-Python/Axelrod Arcas: https://github.com/Nikoleta-v3/Arcas Ciw: https://github.com/CiwPython/Ciw Pandas: https://github.com/pandas-dev/pandas Skleanr:
http://scikit-learn.org/stable/ Numpy: https://github.com/numpy/numpy cryptography: https://github.com/pyca/cryptography fastnumbers: https://github.com/SethMMorton/fastnumbers yacluster: https://github.com/KrzysiekJ/yacluster binaryornot: https://github.com/audreyr/binaryornot . . .
None
@NikoletaGlyn https://github.com/Nikoleta-v3 @SoftwateSaved @PhoenixCUni