Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Testing Research Software
Search
Nikoleta
March 14, 2017
Programming
0
320
Testing Research Software
Slides for the talk Writing tests for research software for PyCon Namibia 2017
Nikoleta
March 14, 2017
Tweet
Share
More Decks by Nikoleta
See All by Nikoleta
A trip to earth science with python as a companion
nikoletav3
0
50
Arcas: Using Python to access open research literature
nikoletav3
1
180
Optimisation of short memory strategies in the Iterated Prisoners Dilemma
nikoletav3
0
56
Arcas
nikoletav3
0
490
SSI Selection Day
nikoletav3
0
410
SWORDS-03-10-2016
nikoletav3
0
51
PyCon UK 2016
nikoletav3
0
160
Other Decks in Programming
See All in Programming
AIフル活用時代だからこそ学んでおきたい働き方の心得
shinoyu
0
130
CSC307 Lecture 02
javiergs
PRO
1
770
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
0
930
AI Schema Enrichment for your Oracle AI Database
thatjeffsmith
0
250
AI時代の認知負荷との向き合い方
optfit
0
150
AI Agent の開発と運用を支える Durable Execution #AgentsInProd
izumin5210
7
2.3k
疑似コードによるプロンプト記述、どのくらい正確に実行される?
kokuyouwind
0
380
AWS re:Invent 2025参加 直前 Seattle-Tacoma Airport(SEA)におけるハードウェア紛失インシデントLT
tetutetu214
2
110
開発者から情シスまで - 多様なユーザー層に届けるAPI提供戦略 / Postman API Night Okinawa 2026 Winter
tasshi
0
200
AIによる高速開発をどう制御するか? ガードレール設置で開発速度と品質を両立させたチームの事例
tonkotsuboy_com
7
2.1k
AtCoder Conference 2025
shindannin
0
1k
Spinner 軸ズレ現象を調べたらレンダリング深淵に飲まれた #レバテックMeetup
bengo4com
1
230
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
340
58k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
Darren the Foodie - Storyboard
khoart
PRO
2
2.3k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
49k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
320
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
200
How to Think Like a Performance Engineer
csswizardry
28
2.4k
The SEO Collaboration Effect
kristinabergwall1
0
350
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
110k
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
98
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Transcript
Writing tests for research software @NikoletaGlyn
None
TESTING
0, 1, 1, 2, 3, 5, 8, 13, 21, 34
...
F0 = 0 F1 = 1 Fn = Fn−1 +
Fn−2
main.py def fib(n): if n == 0: return 0 if
n == 1: return 1 return 2 * fib(n - 1)
n 2 3 4 . . . 16 17 18
Fn 1 2 3 . . . 987 1597 2584 Fn−1 1 1 2 . . . 610 987 1597 Fn Fn−1 1.000 2.000 1.500 . . . 1.618 1.618 1.618
n 2 3 4 . . . 16 17 18
Fn 1 2 3 . . . 987 1597 2584 Fn−1 1 1 2 . . . 610 987 1597 Fn Fn−1 1.000 2.000 1.500 . . . 1.618 1.618 1.618 φ 1.61803...
. |-- main.py |-- golden.py
golden.py import main for n in range(10, 100000): golden_ratio =
fib(n) / fib(n - 1) print(golden_ratio)
golden.py import main for n in range(10, 100000): golden_ratio =
fib(n) / fib(n - 1) print(golden_ratio) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ...
golden.py import main for n in range(10, 100000): golden_ratio =
fib(n) / fib(n - 1) print(golden_ratio) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ... Glynatsi 2017, “SOLVES THE FIBONACCI MYSTERY”
WRITE REVIEW PUBLISH
20% OF GENETIC RESEARCH IS WRONG Gene name errors are
widespread in the scientific literature by Mark Ziemann, Yotam Eren and Assam El-Osta
INDUSTRY
INDUSTRY AMAZON
. |-- main.py |-- golden.py |-- test_main.py
test main.py import unittest import main class TestExample(unittest.TestCase): def test_initial(self):
self.assertEqual(fib(0), 0) self.assertEqual(fib(1), 1) def test_fib(self): self.assertEqual(fib(2), 1) self.assertEqual(fib(3), 2)
test main.py import unittest import main class TestExample(unittest.TestCase): def test_initial(self):
self.assertEqual(fib(0), 0) self.assertEqual(fib(1), 1) def test_fib(self): self.assertEqual(fib(2), 1) self.assertEqual(fib(3), 2) python -m unittest test_main.py
test main.py import unittest import main class TestExample(unittest.TestCase): def test_initial(self):
self.assertEqual(fib(0), 0) self.assertEqual(fib(1), 1) def test_fib(self): self.assertEqual(fib(2), 1) self.assertEqual(fib(3), 2) python -m unittest test_main.py self.assertEqual(fib(2), 1) AssertionError: 2 != 1 ----------------------------- Ran 2 tests in 0.000s FAILED (failures=1)
main.py def fib(n): if n == 0: return 0 if
n == 1: return 1 return 2 * fib(n - 1)
main.py def fib(n): if n == 0: return 0 if
n == 1: return 1 return fib(n - 1) + fib(n - 2)
main.py def fib(n): if n == 0: return 0 if
n == 1: return 1 return fib(n - 1) + fib(n - 2) python -m unittest test_main.py ------------------------------- Ran 2 tests in 0.000s OK
main.py def fib(n): if n == 0: return 0 if
n == 1: return 1 return fib(n - 1) + fib(n - 2) python -m unittest test_main.py ------------------------------- Ran 2 tests in 0.000s OK Glynatsi 2017, “TRYING TO RECLAIM REPUTATION”
Doc Testing
main.py import unittest def fib(n): """Returns the n th fibonacci
number. For example: >>> fib(5) 5 >>> fib(6) 8 >>> fib(5) + fib(6) 13 >>> fib(7) 10 """ if n == 0: return 0 elif n == 1: return 1 else: return fib(n - 1) + fib(n - 2)
python -m doctest main.py Failed example: fib(7) Expected: 10 Got:
13 **************************** 1 items had failures: 1 of 4 in main.fib ***Test Failed*** 1 failures.
main.py import unittest def fib(n): """Returns the n th fibonacci
number. For example: >>> fib(5) 5 >>> fib(6) 8 >>> fib(5) + fib(6) 13 >>> fib(7) 13 """ if n == 0: return 0 elif n == 1: return 1 else: return fib(n - 1) + fib(n - 2)
Property Based Testing
from hypothesis import given from hypothesis.strategies import integers class TestFib(unittest.TestCase):
@given(k=integers(min_value=2)) def test_fib(self, k): self.assertTrue(fib(k), fib(k - 1) + fib(k - 2)) https://github.com/HypothesisWorks @DRMacIver
It’s impossible to conduct research without software, say 7 out
of 10 UK researchers Simon Hettrick uk/blog/2016-09-12-its-impossible-conduct-research-without-out-10-uk- researchers
USE 92%
IMPOSSIBLE 69%
DEVELOP 56%
TRAINING 79%
USE 92% IMPOSSIBLE 69% DEVELOP 56% TRAINING 79%
Axelrod : https://github.com/Axelrod-Python/Axelrod Arcas: https://github.com/Nikoleta-v3/Arcas Ciw: https://github.com/CiwPython/Ciw Pandas: https://github.com/pandas-dev/pandas Skleanr:
http://scikit-learn.org/stable/ Numpy: https://github.com/numpy/numpy cryptography: https://github.com/pyca/cryptography fastnumbers: https://github.com/SethMMorton/fastnumbers yacluster: https://github.com/KrzysiekJ/yacluster binaryornot: https://github.com/audreyr/binaryornot . . .
None
@NikoletaGlyn https://github.com/Nikoleta-v3 @SoftwateSaved @PhoenixCUni