Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Testing Research Software
Search
Nikoleta
March 14, 2017
Programming
0
310
Testing Research Software
Slides for the talk Writing tests for research software for PyCon Namibia 2017
Nikoleta
March 14, 2017
Tweet
Share
More Decks by Nikoleta
See All by Nikoleta
A trip to earth science with python as a companion
nikoletav3
0
44
Arcas: Using Python to access open research literature
nikoletav3
1
170
Optimisation of short memory strategies in the Iterated Prisoners Dilemma
nikoletav3
0
53
Arcas
nikoletav3
0
450
SSI Selection Day
nikoletav3
0
400
SWORDS-03-10-2016
nikoletav3
0
47
PyCon UK 2016
nikoletav3
0
160
Other Decks in Programming
See All in Programming
Amazon Q CLI開発で学んだAIコーディングツールの使い方
licux
3
180
実践!App Intents対応
yuukiw00w
1
280
DynamoDBは怖くない!〜テーブル設計の勘所とテスト戦略〜
hyamazaki
1
200
GitHub Copilotの全体像と活用のヒント AI駆動開発の最初の一歩
74th
7
2.8k
WebAssemblyインタプリタを書く ~Component Modelを添えて~
ruccho
1
830
あまり知られていない MCP 仕様たち / MCP specifications that aren’t widely known
ktr_0731
0
270
MCP連携で加速するAI駆動開発/mcp integration accelerates ai-driven-development
bpstudy
0
300
あのころの iPod を どうにか再生させたい
orumin
2
2.5k
DockerからECSへ 〜 AWSの海に出る前に知っておきたいこと 〜
ota1022
1
120
バイブコーディング × 設計思考
nogu66
0
120
0から始めるモジュラーモノリス-クリーンなモノリスを目指して
sushi0120
1
280
ワープロって実は計算機で
pepepper
2
1.3k
Featured
See All Featured
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Statistics for Hackers
jakevdp
799
220k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Measuring & Analyzing Core Web Vitals
bluesmoon
8
560
Optimizing for Happiness
mojombo
379
70k
Why Our Code Smells
bkeepers
PRO
338
57k
How GitHub (no longer) Works
holman
314
140k
Designing Experiences People Love
moore
142
24k
A Tale of Four Properties
chriscoyier
160
23k
KATA
mclloyd
32
14k
Transcript
Writing tests for research software @NikoletaGlyn
None
TESTING
0, 1, 1, 2, 3, 5, 8, 13, 21, 34
...
F0 = 0 F1 = 1 Fn = Fn−1 +
Fn−2
main.py def fib(n): if n == 0: return 0 if
n == 1: return 1 return 2 * fib(n - 1)
n 2 3 4 . . . 16 17 18
Fn 1 2 3 . . . 987 1597 2584 Fn−1 1 1 2 . . . 610 987 1597 Fn Fn−1 1.000 2.000 1.500 . . . 1.618 1.618 1.618
n 2 3 4 . . . 16 17 18
Fn 1 2 3 . . . 987 1597 2584 Fn−1 1 1 2 . . . 610 987 1597 Fn Fn−1 1.000 2.000 1.500 . . . 1.618 1.618 1.618 φ 1.61803...
. |-- main.py |-- golden.py
golden.py import main for n in range(10, 100000): golden_ratio =
fib(n) / fib(n - 1) print(golden_ratio)
golden.py import main for n in range(10, 100000): golden_ratio =
fib(n) / fib(n - 1) print(golden_ratio) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ...
golden.py import main for n in range(10, 100000): golden_ratio =
fib(n) / fib(n - 1) print(golden_ratio) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ... Glynatsi 2017, “SOLVES THE FIBONACCI MYSTERY”
WRITE REVIEW PUBLISH
20% OF GENETIC RESEARCH IS WRONG Gene name errors are
widespread in the scientific literature by Mark Ziemann, Yotam Eren and Assam El-Osta
INDUSTRY
INDUSTRY AMAZON
. |-- main.py |-- golden.py |-- test_main.py
test main.py import unittest import main class TestExample(unittest.TestCase): def test_initial(self):
self.assertEqual(fib(0), 0) self.assertEqual(fib(1), 1) def test_fib(self): self.assertEqual(fib(2), 1) self.assertEqual(fib(3), 2)
test main.py import unittest import main class TestExample(unittest.TestCase): def test_initial(self):
self.assertEqual(fib(0), 0) self.assertEqual(fib(1), 1) def test_fib(self): self.assertEqual(fib(2), 1) self.assertEqual(fib(3), 2) python -m unittest test_main.py
test main.py import unittest import main class TestExample(unittest.TestCase): def test_initial(self):
self.assertEqual(fib(0), 0) self.assertEqual(fib(1), 1) def test_fib(self): self.assertEqual(fib(2), 1) self.assertEqual(fib(3), 2) python -m unittest test_main.py self.assertEqual(fib(2), 1) AssertionError: 2 != 1 ----------------------------- Ran 2 tests in 0.000s FAILED (failures=1)
main.py def fib(n): if n == 0: return 0 if
n == 1: return 1 return 2 * fib(n - 1)
main.py def fib(n): if n == 0: return 0 if
n == 1: return 1 return fib(n - 1) + fib(n - 2)
main.py def fib(n): if n == 0: return 0 if
n == 1: return 1 return fib(n - 1) + fib(n - 2) python -m unittest test_main.py ------------------------------- Ran 2 tests in 0.000s OK
main.py def fib(n): if n == 0: return 0 if
n == 1: return 1 return fib(n - 1) + fib(n - 2) python -m unittest test_main.py ------------------------------- Ran 2 tests in 0.000s OK Glynatsi 2017, “TRYING TO RECLAIM REPUTATION”
Doc Testing
main.py import unittest def fib(n): """Returns the n th fibonacci
number. For example: >>> fib(5) 5 >>> fib(6) 8 >>> fib(5) + fib(6) 13 >>> fib(7) 10 """ if n == 0: return 0 elif n == 1: return 1 else: return fib(n - 1) + fib(n - 2)
python -m doctest main.py Failed example: fib(7) Expected: 10 Got:
13 **************************** 1 items had failures: 1 of 4 in main.fib ***Test Failed*** 1 failures.
main.py import unittest def fib(n): """Returns the n th fibonacci
number. For example: >>> fib(5) 5 >>> fib(6) 8 >>> fib(5) + fib(6) 13 >>> fib(7) 13 """ if n == 0: return 0 elif n == 1: return 1 else: return fib(n - 1) + fib(n - 2)
Property Based Testing
from hypothesis import given from hypothesis.strategies import integers class TestFib(unittest.TestCase):
@given(k=integers(min_value=2)) def test_fib(self, k): self.assertTrue(fib(k), fib(k - 1) + fib(k - 2)) https://github.com/HypothesisWorks @DRMacIver
It’s impossible to conduct research without software, say 7 out
of 10 UK researchers Simon Hettrick uk/blog/2016-09-12-its-impossible-conduct-research-without-out-10-uk- researchers
USE 92%
IMPOSSIBLE 69%
DEVELOP 56%
TRAINING 79%
USE 92% IMPOSSIBLE 69% DEVELOP 56% TRAINING 79%
Axelrod : https://github.com/Axelrod-Python/Axelrod Arcas: https://github.com/Nikoleta-v3/Arcas Ciw: https://github.com/CiwPython/Ciw Pandas: https://github.com/pandas-dev/pandas Skleanr:
http://scikit-learn.org/stable/ Numpy: https://github.com/numpy/numpy cryptography: https://github.com/pyca/cryptography fastnumbers: https://github.com/SethMMorton/fastnumbers yacluster: https://github.com/KrzysiekJ/yacluster binaryornot: https://github.com/audreyr/binaryornot . . .
None
@NikoletaGlyn https://github.com/Nikoleta-v3 @SoftwateSaved @PhoenixCUni