$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Optimisation of short memory strategies in the ...
Search
Nikoleta
June 04, 2017
Science
0
55
Optimisation of short memory strategies in the Iterated Prisoners Dilemma
Wales Mathematics Colloquium 2017.
Nikoleta
June 04, 2017
Tweet
Share
More Decks by Nikoleta
See All by Nikoleta
A trip to earth science with python as a companion
nikoletav3
0
49
Arcas: Using Python to access open research literature
nikoletav3
1
180
Testing Research Software
nikoletav3
0
320
Arcas
nikoletav3
0
470
SSI Selection Day
nikoletav3
0
410
SWORDS-03-10-2016
nikoletav3
0
51
PyCon UK 2016
nikoletav3
0
160
Other Decks in Science
See All in Science
HDC tutorial
michielstock
0
240
Hakonwa-Quaternion
hiranabe
1
160
知能とはなにかーヒトとAIのあいだー
tagtag
0
120
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
450
データマイニング - ノードの中心性
trycycle
PRO
0
320
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
560
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1.1k
高校生就活へのDA導入の提案
shunyanoda
0
6.1k
2025-05-31-pycon_italia
sofievl
0
110
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
400
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
420
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
150
Featured
See All Featured
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
For a Future-Friendly Web
brad_frost
180
10k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Six Lessons from altMBA
skipperchong
29
4.1k
Building Adaptive Systems
keathley
44
2.9k
Navigating Team Friction
lara
191
16k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
GitHub's CSS Performance
jonrohan
1032
470k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Transcript
Optimisation of short memory strategies in the Iterated Prisoners Dilemma
Nikoleta E. Glynatsi Supervised by: Dr. Vincent Knight Dr. Jonathan Gillard
(3, 3) (0, 5) (5, 0) (1, 1)
(3, 3) (0, 5) (5, 0) (1, 1) (R, P,
S, T) = (3, 1, 0, 5)
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995
2000 2005 2010 2015 0 20 40 60 80 100 number of records Articles per Year (N=1145)
CC CD DC DD C D C D C D
C D p1 1 − p1 p2 1 − p2 p3 1 − p3 p4 1 − p4 p = (p1 , p2 , p3 , p4 ) ∈ R4 [0,1]
Christopher Lee, Marc Harper, and Dashiell Fryer. The art of
war: Beyond memory-one strategies in population games. 2015.
How good are memory one strategies ?
CC CD DC DD
M = p1 q1 p1 (−q1
+ 1) q1 (−p1 + 1) (−p1 + 1)(−q1 + 1) p2 q3 p2 (−q3 + 1) q3 (−p2 + 1) (−p2 + 1)(−q3 + 1) p3 q2 p3 (−q2 + 1) q2 (−p3 + 1) (−p3 + 1)(−q2 + 1) p4 q4 p4 (−q4 + 1) q4 (−p4 + 1) (−p4 + 1)(−q4 + 1)
maxp uq (p) such that p ∈ R4 [0,1]
Lemma uq(p) = 1 2 pQpT + cT p +
a 1 2 p ¯ QpT + ¯ cT p + ¯ a Q, ¯ Q ∈ R4×4 c, ¯ c ∈ R4×1 a, ¯ a ∈ R
maxp uq (p) such that p ∈ R4 [0,1]
maxp uq (p) such that p ∈ R4 [0,1] subject
to p1 = p2 = p3 = p4 = p
Lemma uq(p) = n2p2 + n1p + n0 d1p +
d0 n2 = −(q1 − q2 − 2q3 + 2q4) n1 = −q1 + 2q2 + 5q3 − 7q4 − 1 n0 = q2 − 5q4 − 1 d1 = q1 − q2 − q3 + q4 d0 = q2 − q4 − 1
q = 1, 1, 0, 2 3 0 1 p
0 1 2 3 4 5 theoretic simulated
q = 1, 1, 0, 2 3 0 1 p
0 1 2 3 4 5 theoretic simulated uq (p) = −4p2 3 + 14p 3 − 10 3 2p 3 − 2 3
q = 1, 1, 0, 2 3 0 1 p
0 1 2 3 4 5 theoretic simulated uq (p) = −4p2 3 + 14p 3 − 10 3 2p 3 − 2 3 = −2p + 5
q = 1, 0, 1, 1 3 0 1 p
0 1 2 3 4 5 theoretic simulated
q = 1, 0, 1, 1 3 0 1 p
0 1 2 3 4 5 theoretic simulated uq (p) = p2 3 + 8p 3 − 10 3 p 3 − 4 3
q = 1, 0, 1, 1 3 0 1 p
0 1 2 3 4 5 theoretic simulated uq (p) = p2 3 + 8p 3 − 10 3 p 3 − 4 3 = p + 2
q = 2 3 , 0, 2 3 , 1
3 0 1 p 0 1 2 3 4 5 theoretic simulated
q = 2 3 , 0, 2 3 , 1
3 0 1 p 0 1 2 3 4 5 theoretic simulated uq (p) = 2p 3 − 8 3 p 3 − 4 3
q = 2 3 , 0, 2 3 , 1
3 0 1 p 0 1 2 3 4 5 theoretic simulated uq (p) = 2p 3 − 8 3 p 3 − 4 3 = 2
q = 2 3 , 1 3 , 1 3
, 0 0 1 p 0 1 2 3 4 5 theoretic simulated
q = 2 3 , 1 3 , 1 3
, 0 0 1 p 0 1 2 3 4 5 theoretic simulated uq (p) = p2 3 − 2p 3 − 2 3 −2 3
q = 2 3 , 1 3 , 1 3
, 0 0 1 p 0 1 2 3 4 5 theoretic simulated uq (p) = p2 3 − 2p 3 − 2 3 −2 3 = − p2 2 + p + 1
Lemma (Indifferent) −q1 + q2 + 2q3 − 2q4 =
0 and (q2 − q4 − 1)(q1 − 2q2 − 5q3 + 7q4 + 1) − (q2 − 5q4 − 1)(q1 − q2 − q3 + q4 ) = 0. Proof. uq (p) = n2 p2 + n1 p + n0 d1 p + d0 = a0 n2 p2 + n1 p + n0 = a0 d1 p + a0 d0 n2 = 0 n1 d0 = d1 n0
Lemma (Linear) (q1 q4 − q2 q3 + q3 −
q4 )(4q1 − 3q2 − 4q3 + 3q4 − 1) = 0 Proof. uq (p) = n2 p2 + n1 p + n0 d1 p + d0 = a1 p + a0 n2 p2 + n1 p + n0 = a1 d1 p2 + (d1 a0 + a1 d0 )p + a0 d0 n2 = d1 a1 n1 d0 = d1 n0 + a1 d0
Lemma (Quadratic) (q1 − q2 − q3 + q4 )
= 0, (q1 q4 − q2 q3 + q3 − q4 )(4q1 − 3q2 − 4q3 + 3q4 − 1) = 0 and q2 − q4 − 1 = 0 Proof. uq (p) = n2 p2 + n1 p + n0 d1 p + d0 = a2 p2 + a1 p + a0 n2 p2 + n1 p + n0 = d1 a2 p3 + (a1 d1 + d0 a2 )p2 + (d1 a0 + a1 d0 )p + a0 d0 a1 d1 = 0 n2 = d1 a1 + d0 an2 n1 d0 = d1 n0 + a1 d0
du dp = m2 p2 + m1 p + m0
(d1 p + d0 )2 p uq p− p+ p uq p− p+ p uq p− p+ p uq p− p+
Theorem (Optimization of purely random player) Sq = 0, p±
, 1 0 < p± < 1, p± = −d0 d1 p∗ = argmax p∈Sq uq (p)
q = 7 8 , 7 16 , 3 8
, 0 0.0 0.2 0.4 0.6 0.8 1.0 p 0 1 2 3 4 5 theoretical p* simulated
q = 1 3 , 2 3 , 1, 0
0.0 0.2 0.4 0.6 0.8 1.0 p 0 1 2 3 4 5 theoretical p* simulated
q(1), q(2), q(3) . . . q(N) max p 1
N N i=1 uq (i)(p)
q(1), q(2), q(3) . . . q(N) max p 1
N N i=1 uq (i)(p) max p u 1 N N i=1 q(i) (p)
0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3
4 5 Tournament size N=9 q u p* simulated
p∗ = argmaxS q(1),...,q(n) u(p) where, | Sq(1),...,q(n) |≤ 2N
+ 2
p∗ = argmaxS q(1),...,q(n) u(p) where, | Sq(1),...,q(n) |≤ 2N
+ 2 @NikoletaGlyn https://github.com/Nikoleta-v3