Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Optimisation of short memory strategies in the ...
Search
Nikoleta
June 04, 2017
Science
0
54
Optimisation of short memory strategies in the Iterated Prisoners Dilemma
Wales Mathematics Colloquium 2017.
Nikoleta
June 04, 2017
Tweet
Share
More Decks by Nikoleta
See All by Nikoleta
A trip to earth science with python as a companion
nikoletav3
0
46
Arcas: Using Python to access open research literature
nikoletav3
1
170
Testing Research Software
nikoletav3
0
310
Arcas
nikoletav3
0
450
SSI Selection Day
nikoletav3
0
400
SWORDS-03-10-2016
nikoletav3
0
48
PyCon UK 2016
nikoletav3
0
160
Other Decks in Science
See All in Science
データベース10: 拡張実体関連モデル
trycycle
PRO
0
970
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
840
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
190
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1k
データマイニング - グラフデータと経路
trycycle
PRO
1
210
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
4
1.9k
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
250
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
300
学術講演会中央大学学員会府中支部
tagtag
0
300
2025-06-11-ai_belgium
sofievl
1
150
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
230
データベース01: データベースを使わない世界
trycycle
PRO
1
770
Featured
See All Featured
Facilitating Awesome Meetings
lara
55
6.5k
Gamification - CAS2011
davidbonilla
81
5.4k
Optimizing for Happiness
mojombo
379
70k
Rails Girls Zürich Keynote
gr2m
95
14k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
The Invisible Side of Design
smashingmag
301
51k
Being A Developer After 40
akosma
90
590k
Unsuck your backbone
ammeep
671
58k
Why Our Code Smells
bkeepers
PRO
339
57k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
Transcript
Optimisation of short memory strategies in the Iterated Prisoners Dilemma
Nikoleta E. Glynatsi Supervised by: Dr. Vincent Knight Dr. Jonathan Gillard
(3, 3) (0, 5) (5, 0) (1, 1)
(3, 3) (0, 5) (5, 0) (1, 1) (R, P,
S, T) = (3, 1, 0, 5)
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995
2000 2005 2010 2015 0 20 40 60 80 100 number of records Articles per Year (N=1145)
CC CD DC DD C D C D C D
C D p1 1 − p1 p2 1 − p2 p3 1 − p3 p4 1 − p4 p = (p1 , p2 , p3 , p4 ) ∈ R4 [0,1]
Christopher Lee, Marc Harper, and Dashiell Fryer. The art of
war: Beyond memory-one strategies in population games. 2015.
How good are memory one strategies ?
CC CD DC DD
M = p1 q1 p1 (−q1
+ 1) q1 (−p1 + 1) (−p1 + 1)(−q1 + 1) p2 q3 p2 (−q3 + 1) q3 (−p2 + 1) (−p2 + 1)(−q3 + 1) p3 q2 p3 (−q2 + 1) q2 (−p3 + 1) (−p3 + 1)(−q2 + 1) p4 q4 p4 (−q4 + 1) q4 (−p4 + 1) (−p4 + 1)(−q4 + 1)
maxp uq (p) such that p ∈ R4 [0,1]
Lemma uq(p) = 1 2 pQpT + cT p +
a 1 2 p ¯ QpT + ¯ cT p + ¯ a Q, ¯ Q ∈ R4×4 c, ¯ c ∈ R4×1 a, ¯ a ∈ R
maxp uq (p) such that p ∈ R4 [0,1]
maxp uq (p) such that p ∈ R4 [0,1] subject
to p1 = p2 = p3 = p4 = p
Lemma uq(p) = n2p2 + n1p + n0 d1p +
d0 n2 = −(q1 − q2 − 2q3 + 2q4) n1 = −q1 + 2q2 + 5q3 − 7q4 − 1 n0 = q2 − 5q4 − 1 d1 = q1 − q2 − q3 + q4 d0 = q2 − q4 − 1
q = 1, 1, 0, 2 3 0 1 p
0 1 2 3 4 5 theoretic simulated
q = 1, 1, 0, 2 3 0 1 p
0 1 2 3 4 5 theoretic simulated uq (p) = −4p2 3 + 14p 3 − 10 3 2p 3 − 2 3
q = 1, 1, 0, 2 3 0 1 p
0 1 2 3 4 5 theoretic simulated uq (p) = −4p2 3 + 14p 3 − 10 3 2p 3 − 2 3 = −2p + 5
q = 1, 0, 1, 1 3 0 1 p
0 1 2 3 4 5 theoretic simulated
q = 1, 0, 1, 1 3 0 1 p
0 1 2 3 4 5 theoretic simulated uq (p) = p2 3 + 8p 3 − 10 3 p 3 − 4 3
q = 1, 0, 1, 1 3 0 1 p
0 1 2 3 4 5 theoretic simulated uq (p) = p2 3 + 8p 3 − 10 3 p 3 − 4 3 = p + 2
q = 2 3 , 0, 2 3 , 1
3 0 1 p 0 1 2 3 4 5 theoretic simulated
q = 2 3 , 0, 2 3 , 1
3 0 1 p 0 1 2 3 4 5 theoretic simulated uq (p) = 2p 3 − 8 3 p 3 − 4 3
q = 2 3 , 0, 2 3 , 1
3 0 1 p 0 1 2 3 4 5 theoretic simulated uq (p) = 2p 3 − 8 3 p 3 − 4 3 = 2
q = 2 3 , 1 3 , 1 3
, 0 0 1 p 0 1 2 3 4 5 theoretic simulated
q = 2 3 , 1 3 , 1 3
, 0 0 1 p 0 1 2 3 4 5 theoretic simulated uq (p) = p2 3 − 2p 3 − 2 3 −2 3
q = 2 3 , 1 3 , 1 3
, 0 0 1 p 0 1 2 3 4 5 theoretic simulated uq (p) = p2 3 − 2p 3 − 2 3 −2 3 = − p2 2 + p + 1
Lemma (Indifferent) −q1 + q2 + 2q3 − 2q4 =
0 and (q2 − q4 − 1)(q1 − 2q2 − 5q3 + 7q4 + 1) − (q2 − 5q4 − 1)(q1 − q2 − q3 + q4 ) = 0. Proof. uq (p) = n2 p2 + n1 p + n0 d1 p + d0 = a0 n2 p2 + n1 p + n0 = a0 d1 p + a0 d0 n2 = 0 n1 d0 = d1 n0
Lemma (Linear) (q1 q4 − q2 q3 + q3 −
q4 )(4q1 − 3q2 − 4q3 + 3q4 − 1) = 0 Proof. uq (p) = n2 p2 + n1 p + n0 d1 p + d0 = a1 p + a0 n2 p2 + n1 p + n0 = a1 d1 p2 + (d1 a0 + a1 d0 )p + a0 d0 n2 = d1 a1 n1 d0 = d1 n0 + a1 d0
Lemma (Quadratic) (q1 − q2 − q3 + q4 )
= 0, (q1 q4 − q2 q3 + q3 − q4 )(4q1 − 3q2 − 4q3 + 3q4 − 1) = 0 and q2 − q4 − 1 = 0 Proof. uq (p) = n2 p2 + n1 p + n0 d1 p + d0 = a2 p2 + a1 p + a0 n2 p2 + n1 p + n0 = d1 a2 p3 + (a1 d1 + d0 a2 )p2 + (d1 a0 + a1 d0 )p + a0 d0 a1 d1 = 0 n2 = d1 a1 + d0 an2 n1 d0 = d1 n0 + a1 d0
du dp = m2 p2 + m1 p + m0
(d1 p + d0 )2 p uq p− p+ p uq p− p+ p uq p− p+ p uq p− p+
Theorem (Optimization of purely random player) Sq = 0, p±
, 1 0 < p± < 1, p± = −d0 d1 p∗ = argmax p∈Sq uq (p)
q = 7 8 , 7 16 , 3 8
, 0 0.0 0.2 0.4 0.6 0.8 1.0 p 0 1 2 3 4 5 theoretical p* simulated
q = 1 3 , 2 3 , 1, 0
0.0 0.2 0.4 0.6 0.8 1.0 p 0 1 2 3 4 5 theoretical p* simulated
q(1), q(2), q(3) . . . q(N) max p 1
N N i=1 uq (i)(p)
q(1), q(2), q(3) . . . q(N) max p 1
N N i=1 uq (i)(p) max p u 1 N N i=1 q(i) (p)
0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3
4 5 Tournament size N=9 q u p* simulated
p∗ = argmaxS q(1),...,q(n) u(p) where, | Sq(1),...,q(n) |≤ 2N
+ 2
p∗ = argmaxS q(1),...,q(n) u(p) where, | Sq(1),...,q(n) |≤ 2N
+ 2 @NikoletaGlyn https://github.com/Nikoleta-v3