Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Optimisation of short memory strategies in the ...
Search
Nikoleta
June 04, 2017
Science
0
53
Optimisation of short memory strategies in the Iterated Prisoners Dilemma
Wales Mathematics Colloquium 2017.
Nikoleta
June 04, 2017
Tweet
Share
More Decks by Nikoleta
See All by Nikoleta
A trip to earth science with python as a companion
nikoletav3
0
44
Arcas: Using Python to access open research literature
nikoletav3
1
170
Testing Research Software
nikoletav3
0
310
Arcas
nikoletav3
0
440
SSI Selection Day
nikoletav3
0
400
SWORDS-03-10-2016
nikoletav3
0
47
PyCon UK 2016
nikoletav3
0
160
Other Decks in Science
See All in Science
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
1
440
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
490
マウス肝炎ウイルス感染の遺伝子発現へのテンソル分解の適用によるSARS-CoV-2感染関連重要ヒト遺伝子と有効な薬剤の同定
tagtag
0
120
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
480
Lean4による汎化誤差評価の形式化
milano0017
1
230
データベース10: 拡張実体関連モデル
trycycle
PRO
0
690
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
3
450
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
540
Collective Predictive Coding Hypothesis and Beyond (@Japanese Association for Philosophy of Science, 26th October 2024)
tanichu
0
140
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
130
mathematics of indirect reciprocity
yohm
1
140
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
210
Featured
See All Featured
KATA
mclloyd
29
14k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
930
How GitHub (no longer) Works
holman
314
140k
Adopting Sorbet at Scale
ufuk
77
9.4k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
4 Signs Your Business is Dying
shpigford
184
22k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Gamification - CAS2011
davidbonilla
81
5.3k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Facilitating Awesome Meetings
lara
54
6.4k
RailsConf 2023
tenderlove
30
1.1k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
800
Transcript
Optimisation of short memory strategies in the Iterated Prisoners Dilemma
Nikoleta E. Glynatsi Supervised by: Dr. Vincent Knight Dr. Jonathan Gillard
(3, 3) (0, 5) (5, 0) (1, 1)
(3, 3) (0, 5) (5, 0) (1, 1) (R, P,
S, T) = (3, 1, 0, 5)
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995
2000 2005 2010 2015 0 20 40 60 80 100 number of records Articles per Year (N=1145)
CC CD DC DD C D C D C D
C D p1 1 − p1 p2 1 − p2 p3 1 − p3 p4 1 − p4 p = (p1 , p2 , p3 , p4 ) ∈ R4 [0,1]
Christopher Lee, Marc Harper, and Dashiell Fryer. The art of
war: Beyond memory-one strategies in population games. 2015.
How good are memory one strategies ?
CC CD DC DD
M = p1 q1 p1 (−q1
+ 1) q1 (−p1 + 1) (−p1 + 1)(−q1 + 1) p2 q3 p2 (−q3 + 1) q3 (−p2 + 1) (−p2 + 1)(−q3 + 1) p3 q2 p3 (−q2 + 1) q2 (−p3 + 1) (−p3 + 1)(−q2 + 1) p4 q4 p4 (−q4 + 1) q4 (−p4 + 1) (−p4 + 1)(−q4 + 1)
maxp uq (p) such that p ∈ R4 [0,1]
Lemma uq(p) = 1 2 pQpT + cT p +
a 1 2 p ¯ QpT + ¯ cT p + ¯ a Q, ¯ Q ∈ R4×4 c, ¯ c ∈ R4×1 a, ¯ a ∈ R
maxp uq (p) such that p ∈ R4 [0,1]
maxp uq (p) such that p ∈ R4 [0,1] subject
to p1 = p2 = p3 = p4 = p
Lemma uq(p) = n2p2 + n1p + n0 d1p +
d0 n2 = −(q1 − q2 − 2q3 + 2q4) n1 = −q1 + 2q2 + 5q3 − 7q4 − 1 n0 = q2 − 5q4 − 1 d1 = q1 − q2 − q3 + q4 d0 = q2 − q4 − 1
q = 1, 1, 0, 2 3 0 1 p
0 1 2 3 4 5 theoretic simulated
q = 1, 1, 0, 2 3 0 1 p
0 1 2 3 4 5 theoretic simulated uq (p) = −4p2 3 + 14p 3 − 10 3 2p 3 − 2 3
q = 1, 1, 0, 2 3 0 1 p
0 1 2 3 4 5 theoretic simulated uq (p) = −4p2 3 + 14p 3 − 10 3 2p 3 − 2 3 = −2p + 5
q = 1, 0, 1, 1 3 0 1 p
0 1 2 3 4 5 theoretic simulated
q = 1, 0, 1, 1 3 0 1 p
0 1 2 3 4 5 theoretic simulated uq (p) = p2 3 + 8p 3 − 10 3 p 3 − 4 3
q = 1, 0, 1, 1 3 0 1 p
0 1 2 3 4 5 theoretic simulated uq (p) = p2 3 + 8p 3 − 10 3 p 3 − 4 3 = p + 2
q = 2 3 , 0, 2 3 , 1
3 0 1 p 0 1 2 3 4 5 theoretic simulated
q = 2 3 , 0, 2 3 , 1
3 0 1 p 0 1 2 3 4 5 theoretic simulated uq (p) = 2p 3 − 8 3 p 3 − 4 3
q = 2 3 , 0, 2 3 , 1
3 0 1 p 0 1 2 3 4 5 theoretic simulated uq (p) = 2p 3 − 8 3 p 3 − 4 3 = 2
q = 2 3 , 1 3 , 1 3
, 0 0 1 p 0 1 2 3 4 5 theoretic simulated
q = 2 3 , 1 3 , 1 3
, 0 0 1 p 0 1 2 3 4 5 theoretic simulated uq (p) = p2 3 − 2p 3 − 2 3 −2 3
q = 2 3 , 1 3 , 1 3
, 0 0 1 p 0 1 2 3 4 5 theoretic simulated uq (p) = p2 3 − 2p 3 − 2 3 −2 3 = − p2 2 + p + 1
Lemma (Indifferent) −q1 + q2 + 2q3 − 2q4 =
0 and (q2 − q4 − 1)(q1 − 2q2 − 5q3 + 7q4 + 1) − (q2 − 5q4 − 1)(q1 − q2 − q3 + q4 ) = 0. Proof. uq (p) = n2 p2 + n1 p + n0 d1 p + d0 = a0 n2 p2 + n1 p + n0 = a0 d1 p + a0 d0 n2 = 0 n1 d0 = d1 n0
Lemma (Linear) (q1 q4 − q2 q3 + q3 −
q4 )(4q1 − 3q2 − 4q3 + 3q4 − 1) = 0 Proof. uq (p) = n2 p2 + n1 p + n0 d1 p + d0 = a1 p + a0 n2 p2 + n1 p + n0 = a1 d1 p2 + (d1 a0 + a1 d0 )p + a0 d0 n2 = d1 a1 n1 d0 = d1 n0 + a1 d0
Lemma (Quadratic) (q1 − q2 − q3 + q4 )
= 0, (q1 q4 − q2 q3 + q3 − q4 )(4q1 − 3q2 − 4q3 + 3q4 − 1) = 0 and q2 − q4 − 1 = 0 Proof. uq (p) = n2 p2 + n1 p + n0 d1 p + d0 = a2 p2 + a1 p + a0 n2 p2 + n1 p + n0 = d1 a2 p3 + (a1 d1 + d0 a2 )p2 + (d1 a0 + a1 d0 )p + a0 d0 a1 d1 = 0 n2 = d1 a1 + d0 an2 n1 d0 = d1 n0 + a1 d0
du dp = m2 p2 + m1 p + m0
(d1 p + d0 )2 p uq p− p+ p uq p− p+ p uq p− p+ p uq p− p+
Theorem (Optimization of purely random player) Sq = 0, p±
, 1 0 < p± < 1, p± = −d0 d1 p∗ = argmax p∈Sq uq (p)
q = 7 8 , 7 16 , 3 8
, 0 0.0 0.2 0.4 0.6 0.8 1.0 p 0 1 2 3 4 5 theoretical p* simulated
q = 1 3 , 2 3 , 1, 0
0.0 0.2 0.4 0.6 0.8 1.0 p 0 1 2 3 4 5 theoretical p* simulated
q(1), q(2), q(3) . . . q(N) max p 1
N N i=1 uq (i)(p)
q(1), q(2), q(3) . . . q(N) max p 1
N N i=1 uq (i)(p) max p u 1 N N i=1 q(i) (p)
0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3
4 5 Tournament size N=9 q u p* simulated
p∗ = argmaxS q(1),...,q(n) u(p) where, | Sq(1),...,q(n) |≤ 2N
+ 2
p∗ = argmaxS q(1),...,q(n) u(p) where, | Sq(1),...,q(n) |≤ 2N
+ 2 @NikoletaGlyn https://github.com/Nikoleta-v3