Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Optimisation of short memory strategies in the ...

Nikoleta
June 04, 2017

Optimisation of short memory strategies in the Iterated Prisoners Dilemma

Wales Mathematics Colloquium 2017.

Nikoleta

June 04, 2017
Tweet

More Decks by Nikoleta

Other Decks in Science

Transcript

  1. Optimisation of short memory strategies in the Iterated Prisoners Dilemma

    Nikoleta E. Glynatsi Supervised by: Dr. Vincent Knight Dr. Jonathan Gillard
  2. (3, 3) (0, 5) (5, 0) (1, 1) (R, P,

    S, T) = (3, 1, 0, 5)
  3. 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995

    2000 2005 2010 2015 0 20 40 60 80 100 number of records Articles per Year (N=1145)
  4. CC CD DC DD C D C D C D

    C D p1 1 − p1 p2 1 − p2 p3 1 − p3 p4 1 − p4 p = (p1 , p2 , p3 , p4 ) ∈ R4 [0,1]
  5. Christopher Lee, Marc Harper, and Dashiell Fryer. The art of

    war: Beyond memory-one strategies in population games. 2015.
  6. M =     p1 q1 p1 (−q1

    + 1) q1 (−p1 + 1) (−p1 + 1)(−q1 + 1) p2 q3 p2 (−q3 + 1) q3 (−p2 + 1) (−p2 + 1)(−q3 + 1) p3 q2 p3 (−q2 + 1) q2 (−p3 + 1) (−p3 + 1)(−q2 + 1) p4 q4 p4 (−q4 + 1) q4 (−p4 + 1) (−p4 + 1)(−q4 + 1)    
  7. Lemma uq(p) = 1 2 pQpT + cT p +

    a 1 2 p ¯ QpT + ¯ cT p + ¯ a Q, ¯ Q ∈ R4×4 c, ¯ c ∈ R4×1 a, ¯ a ∈ R
  8. Lemma uq(p) = n2p2 + n1p + n0 d1p +

    d0 n2 = −(q1 − q2 − 2q3 + 2q4) n1 = −q1 + 2q2 + 5q3 − 7q4 − 1 n0 = q2 − 5q4 − 1 d1 = q1 − q2 − q3 + q4 d0 = q2 − q4 − 1
  9. q = 1, 1, 0, 2 3 0 1 p

    0 1 2 3 4 5 theoretic simulated
  10. q = 1, 1, 0, 2 3 0 1 p

    0 1 2 3 4 5 theoretic simulated uq (p) = −4p2 3 + 14p 3 − 10 3 2p 3 − 2 3
  11. q = 1, 1, 0, 2 3 0 1 p

    0 1 2 3 4 5 theoretic simulated uq (p) = −4p2 3 + 14p 3 − 10 3 2p 3 − 2 3 = −2p + 5
  12. q = 1, 0, 1, 1 3 0 1 p

    0 1 2 3 4 5 theoretic simulated
  13. q = 1, 0, 1, 1 3 0 1 p

    0 1 2 3 4 5 theoretic simulated uq (p) = p2 3 + 8p 3 − 10 3 p 3 − 4 3
  14. q = 1, 0, 1, 1 3 0 1 p

    0 1 2 3 4 5 theoretic simulated uq (p) = p2 3 + 8p 3 − 10 3 p 3 − 4 3 = p + 2
  15. q = 2 3 , 0, 2 3 , 1

    3 0 1 p 0 1 2 3 4 5 theoretic simulated
  16. q = 2 3 , 0, 2 3 , 1

    3 0 1 p 0 1 2 3 4 5 theoretic simulated uq (p) = 2p 3 − 8 3 p 3 − 4 3
  17. q = 2 3 , 0, 2 3 , 1

    3 0 1 p 0 1 2 3 4 5 theoretic simulated uq (p) = 2p 3 − 8 3 p 3 − 4 3 = 2
  18. q = 2 3 , 1 3 , 1 3

    , 0 0 1 p 0 1 2 3 4 5 theoretic simulated
  19. q = 2 3 , 1 3 , 1 3

    , 0 0 1 p 0 1 2 3 4 5 theoretic simulated uq (p) = p2 3 − 2p 3 − 2 3 −2 3
  20. q = 2 3 , 1 3 , 1 3

    , 0 0 1 p 0 1 2 3 4 5 theoretic simulated uq (p) = p2 3 − 2p 3 − 2 3 −2 3 = − p2 2 + p + 1
  21. Lemma (Indifferent) −q1 + q2 + 2q3 − 2q4 =

    0 and (q2 − q4 − 1)(q1 − 2q2 − 5q3 + 7q4 + 1) − (q2 − 5q4 − 1)(q1 − q2 − q3 + q4 ) = 0. Proof. uq (p) = n2 p2 + n1 p + n0 d1 p + d0 = a0 n2 p2 + n1 p + n0 = a0 d1 p + a0 d0 n2 = 0 n1 d0 = d1 n0
  22. Lemma (Linear) (q1 q4 − q2 q3 + q3 −

    q4 )(4q1 − 3q2 − 4q3 + 3q4 − 1) = 0 Proof. uq (p) = n2 p2 + n1 p + n0 d1 p + d0 = a1 p + a0 n2 p2 + n1 p + n0 = a1 d1 p2 + (d1 a0 + a1 d0 )p + a0 d0 n2 = d1 a1 n1 d0 = d1 n0 + a1 d0
  23. Lemma (Quadratic) (q1 − q2 − q3 + q4 )

    = 0, (q1 q4 − q2 q3 + q3 − q4 )(4q1 − 3q2 − 4q3 + 3q4 − 1) = 0 and q2 − q4 − 1 = 0 Proof. uq (p) = n2 p2 + n1 p + n0 d1 p + d0 = a2 p2 + a1 p + a0 n2 p2 + n1 p + n0 = d1 a2 p3 + (a1 d1 + d0 a2 )p2 + (d1 a0 + a1 d0 )p + a0 d0      a1 d1 = 0 n2 = d1 a1 + d0 an2 n1 d0 = d1 n0 + a1 d0
  24. du dp = m2 p2 + m1 p + m0

    (d1 p + d0 )2 p uq p− p+ p uq p− p+ p uq p− p+ p uq p− p+
  25. Theorem (Optimization of purely random player) Sq = 0, p±

    , 1 0 < p± < 1, p± = −d0 d1 p∗ = argmax p∈Sq uq (p)
  26. q = 7 8 , 7 16 , 3 8

    , 0 0.0 0.2 0.4 0.6 0.8 1.0 p 0 1 2 3 4 5 theoretical p* simulated
  27. q = 1 3 , 2 3 , 1, 0

    0.0 0.2 0.4 0.6 0.8 1.0 p 0 1 2 3 4 5 theoretical p* simulated
  28. q(1), q(2), q(3) . . . q(N) max p 1

    N N i=1 uq (i)(p) max p u 1 N N i=1 q(i) (p)
  29. 0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3

    4 5 Tournament size N=9 q u p* simulated
  30. p∗ = argmaxS q(1),...,q(n) u(p) where, | Sq(1),...,q(n) |≤ 2N

    + 2 @NikoletaGlyn https://github.com/Nikoleta-v3