Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TFHEのための多項式乗算入門
Search
nindanaoto
February 08, 2020
Research
2
1.2k
TFHEのための多項式乗算入門
nindanaoto
February 08, 2020
Tweet
Share
More Decks by nindanaoto
See All by nindanaoto
準同型暗号による バーチャルセキュアプラットフォーム の開発/Development of Virtual Secure Platform
nindanaoto
3
2k
準同型暗号による バーチャルセキュアプラットフォーム の開発
nindanaoto
1
350
Other Decks in Research
See All in Research
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
400
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
150
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
740
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
260
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
380
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
380
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
490
音声感情認識技術の進展と展望
nagase
0
420
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
450
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
12
6.6k
When Learned Data Structures Meet Computer Vision
matsui_528
1
1.8k
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
220
Featured
See All Featured
Claude Code のすすめ
schroneko
67
210k
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
72
How to Talk to Developers About Accessibility
jct
1
90
Un-Boring Meetings
codingconduct
0
170
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
350
The Pragmatic Product Professional
lauravandoore
37
7.1k
BBQ
matthewcrist
89
9.9k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
94
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Context Engineering - Making Every Token Count
addyosmani
9
570
The browser strikes back
jonoalderson
0
240
Transcript
TFHEのための 多項式乗算入門 松岡 航太郎 @nimdanaoto
自己紹介 •京都大学工学部 電気電子工学科3回生 •理論担当
なぜ多項式乗算? •TFHEにおいて最も重い処理 •数学的に様々な最適化が可能 •アーキテクチャにも強く依存
多項式乗算 •今回は整数係数多項式に限る • 3 + 1 ∗ 2 + 3
= 62 + 11 + 3 •31 ∗ 23 = 713
筆算 •(2) 3 + 1 × 2 + 3 9
+ 3 62 + 2 62 + 11 + 3
フーリエ変換による高速化 •フーリエ変換の畳み込み定理 ∗ = ℱ−1(ℱ ⋅ ℱ ) •FFT(高速フーリエ変換) (
)
= =0 −1 () = =0 −1 −
2 −1 () = 1 =0 −1 ()() 2 = 0,1, … − 1
−1 ⋅ = 1 =0 −1 =0 −1
=0 −1 − 2 =0 −1 − 2 2 = =0 −1 =0 − + =+1 −1 −+ ∵ =0 −1 − 2 = ቊ ≡ 0 0 ℎ
もっと頭のいい解決法 •負巡回もあれば並列に •2N一つではなくN二つ •虚数部にもデータを詰めたい
None
TFHEが独自FFTを使う理由 (しかもアセンブラ) •FFTWは複素数の配列 •メモリアクセス局所性は有利 •実数と虚数部を別に •並び替えなくてよい
倍精度の限界 •log2 ( |∞ |∞ ) < 53 •収まるように設計する必要
GPUの場合は? •倍精度演算機は一般に貧弱 •単精度の32分の1とか •INT32は単精度と同等
NTT(数論変換) •ある法P(素数)の下で考える •原始N乗根が存在する •211−1 = 1024 ≡ 1 11 •これは円周群に同型
どんなPが良い? •cuFHEでは = 264 − 232 + 1 •剰余がとりやすい •7−1
≡ 1 •7 5 192 (−1) ≡ 2
最後に •(多項式)乗算は奥が深い • ≤数万ならToom-Cook •やれば動くし速くなる