Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
予想外に変化する投球の軌道は打者に学習されやすい?~Predictive Codingと予測誤...
Search
nowism
July 17, 2020
Science
0
2.4k
予想外に変化する投球の軌道は打者に学習されやすい?~Predictive Codingと予測誤差を添えて~
「ヒトの脳は予測誤差を修正するように学習する」という最新脳科学のフレームワークを利用して、打者に学習されやすいやすい投球がある可能性について提案、簡単に分析してみました。
nowism
July 17, 2020
Tweet
Share
More Decks by nowism
See All by nowism
伸び率ペナントレース
nowism
0
390
応援を科学する-声援はチームを勝たせるのか-
nowism
2
220
どうしてバントは減らないのか 〜時間割引の視点から〜
nowism
0
3k
"流れ"の正体を考える
nowism
0
1.7k
Other Decks in Science
See All in Science
Symfony Console Facelift
chalasr
2
450
生成AI による論文執筆サポートの手引き(ワークショップ) / A guide to supporting dissertation writing with generative AI (workshop)
ks91
PRO
0
500
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
190
MCMCのR-hatは分散分析である
moricup
0
350
創薬における機械学習技術について
kanojikajino
16
5.3k
機械学習 - 授業概要
trycycle
PRO
0
190
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
520
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
140
機械学習 - pandas入門
trycycle
PRO
0
260
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
490
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
900
統計学入門講座 第1回スライド
techmathproject
0
340
Featured
See All Featured
Unsuck your backbone
ammeep
671
58k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
The Cost Of JavaScript in 2023
addyosmani
51
8.4k
Making Projects Easy
brettharned
116
6.3k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
124
52k
How to train your dragon (web standard)
notwaldorf
92
6.1k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
VelocityConf: Rendering Performance Case Studies
addyosmani
330
24k
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
GraphQLとの向き合い方2022年版
quramy
47
14k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
670
Transcript
༧֎ʹมԽ͢Δٿيಓ ଧऀʹֶश͞Ε͍͢ʁ なういず d1SFEJDUJWF$PEJOHͱ ༧ଌޡࠩΛఴ͑ͯd
ͳ͏͍ͣ !OPXJTN@TQPSUT ɿೝՊֶ ⚽ɿദϨΠιϧ ⚾ɿڊਓϑΝϯ 4UBZ)PNFͰϋϚͬͨͷɿ ϓϦύϥɺΩϥοͱϓϦˑνϟϯ
None
࠷৽ՊֶͷΈͰ ٿͷٿ Λߟ͑ͯΈͨʂ
ͷػೳͷ֩৺ɿ ೖྗͷ༧ଌΛߦ͍ ༧ଌޡࠩΛ࠷খԽ͢ΔΑ͏ֶश͢Δ ༧ଌޡࠩɿ ༧ଌͱ࣮ࡍͷೖྗͷࠩ
ࢹ֮ӡಈ੍ޚ ˠػೳશମΛଊ͑ΔΈ ʢFY֮ɾӡಈɾಈʣ ˞࣮ࡍͷϓϩηεճ࿏ະղ໌ ˠઆ໌Ͱ͖Δݱ͕ଟ͍
ᶃ༧ଌ͢Δ ᶄ༧ଌͱ࣮ࡍͷೖྗΛൺֱ͢Δ ᶅ༧ଌޡ͕ࠩখ͘͞ͳΔΑ͏ʹ ֶश͢Δ
༧ଌޡ͕ࠩ͋Δγʔϯɿ όοςΟϯά ˠٿيಓͷ༧
༧ଌޡ͕ࠩେ͖͍ ˠଧऀࣦഊ͢Δ ۭৼΓɾຌୀ ྫɿΦʔϧελʔήʔϜͷ౻ٿࣇ ɾετϨʔτΛ͛Δͱએݴ ɾΧϒϨϥͱখּݪΛۭৼΓࡾৼʹऔΔ ˞ٿͨΒͳ͔ͬͨʂʂ ˡ༧ଌΑΓ্ํΛ௨ա͔ͨ͠Β
ಛҟٿ ༧ଌޡ͕ࠩେ͖͍ ˠདྷΔͱ͔ͬͯଧͯͳ͍ ༧ଌޡࠩΛར༻͍ͯ͠Δखͷྫ ɾ౻ٿࣇʢετϨʔτʣ ɾϚϦΞϊɾϦϕϥ ΧοτϘʔϧ ɾࢁ࡚߁ߊʢzπʔγʔϜzʣ
͑ख ˠ͍Πχϯάɿֶश͕ྃ͠ͳ͍ ಛҟٿΛثʹ͢Δઌൃख ˠ༧ଌޡֶ͕ࠩश͞ΕΔ ˠঃʑʹଧͨΕΔ
ख ɾಛҟٿΛ͛Δઌൃख ɾͦ͏Ͱͳ͍ઌൃख ύϑΥʔϚϯε ɾdճ ॱ ɾdճ ॱҎ߱ 1~3回 4~6回
特異球>⾮特異球 特異球<⾮特異球 ˞༧ଌޡֶ͕ࠩश͞ΕΔͨΊ
ɾੳରͷઌൃख ɾಛҟٿͷఆٛ ɾൺֱ͢ΔύϑΥʔϚϯε ར༻σʔλ #BTFCBMMTBWBOU ˞ٿ͝ͱͷৄࡉͳσʔλΛެ։
ɾੳରͷઌൃख نఆଧ੮Ҏ্Λ͛ͨઌൃख ˠҰఆҎ্ͷ࣮ྗΛ࣋ͭ
ɾಛҟٿͷఆٛ μϧϏογϡ༗ɿҐ ฏۉ ٿछɿετϨʔτɺΧʔϒɺ ΧοτϘʔϧɺεϥΠμʔɺ νΣϯδΞοϓɺγϯΧʔ ಛҟٿɿ֤ٿछฏۉ͔Βڑ ͕Ε͍ͯΔ໊ มԽྔɿਫฏํɾਨํ શखͷฏۉΛऔΔ
ɾಛҟٿख ໊ Darvish Yu カットボール:7位 ストレート、スライダー、シンカー、カーブ Bauer Trevor カットボール:5位 ストレート、スライダー、チェンジアップ、カーブ
Gray Sonny スライダー:4位 ストレート、シンカー、カーブ Junis Jakob チェンジアップ:5位 ストレート、スライダー、シンカー、カーブ Sanchez Anibal カーブ:7位 ストレート、カットボール、シンカー、カーブ、スプリット Lucchesi Joey チェンジアップ:1位 カットボール:7位 シンカー Davies Zach カットボール:2位 シンカー、チェンジアップ Means John チェンジアップ:6位 ストレート、スライダー、カーブ
ɾൺֱ͢ΔύϑΥʔϚϯε 8)*1 ΠχϯάʹԿਓऀΛग़͔ͨ͠ ˞Πχϯάผ8)*1͕؆୯ʹऔಘͰ͖ΔͨΊɺ·ͣ8)*1Λ༻ͨ͠ ~1.00 エース ~1.20 エース級 1.40以上 問題
ྫɿμϧϏογϡ༗ 1回 2回 3回 4回 5回 6回 総計 1.19 0.94 0.85 1.37 1.04 1.35 1.10 0.09 -0.16 -0.25 0.27 -0.06 0.25 ー ˢۤख ˢۤख ͷ෦Λฏۉ͢Δ
ɾΠχϯά͝ͱͷ8)*1ࠩ ɾճɿ྆ऀۤख͕ͩಛҟٿखͷํ͕Α͍ ɾ ճɿಛҟٿख͕ྑύϑΥʔϚϯε ɾdճɿඇಛҟٿख͕ྑύϑΥʔϚϯε 投⼿ 1回 2回 3回 4回
5回 6回 特異球 0.036 -0.109 -0.113 0.013 0.026 0.368 ⾮特異球 0.070 -0.096 0.026 -0.006 -0.011 0.079
ɾಛҟٿख ɾং൫ಘҙͰɺঃʑʹଧͨΕΔ ˠ༧ଌޡࠩΛݮΒֶ͢शͷ݁ՌͰ͋ΔՄೳੑ ɾಛҟٿखͷى༻๏ఏҊ ɾಛҟٿखਓͰΠχϯάͣͭ͛Δ ˠγϣʔτελʔλʔ͖Ͱ͋ΔՄೳੑ ɾಛҟٿखΛٹԉͰى༻ͯ͠ΈΔ
ɾಛҟٿΛछͭٹԉख Yusmeiro Petit ・カットボール3位、カーブ1位 ・円熟のセットアッパー ・最多の80試合に登板 Aaron Bummer ・ストレート7位、カットボール9位、 シンカー5位
・ランナーをほとんど⽣還させない
ɾಛҟٿΛछͭٹԉख Phil Maton ・カットボール1位、ストレート6位 ・ニックネームは“スピンレート” ・移籍先ではWHIP0.81の好成績を残した
ɾஔసͨ͠Β໘നͦ͏ͳख Joey Lucchesi ・6回に打たれる傾向がある ・チェンジアップ1位、カットボール7位の 特異球2球種の持ち主 松井裕樹 ・先発転向が上⼿く⾏かない ・スライダーが特異球である可能性 嶋「こんなボールをなげる投⼿はいない」
参考:https://sportiva.shueisha.co.jp/clm/baseball/npb/2014/02/16/post_356/
͞ΒͳΔੳ͕ඞཁ ɾಛҟٿɿ ্Ґਓଥ͔ ฏۉͱͷڑͰܾΊΔଥੑ ɾύϑΥʔϚϯεɿ ٿछ͝ͱͷΛݟΔඞཁ ଞͷཁҼ ർ࿑ Λߟྀ ɾଞͷઌൃखٹԉखʹ͍ͭͯ
ɾ࣮ࡍͷ׆ಈʢকདྷతʹʣ
ɾ1SFEJDUJWF$PEJOH ͷΈ ɾ༧ଌޡࠩΛݮΒ͢Α͏ʹֶश ˠϘʔϧͷيಓͷֶशʹ͋ͯ·ΔՄೳੑ ɾબखͷى༻๏ධՁʹԠ༻ ˠ͞ΒͳΔௐ͕ࠪඞཁ ɾՊֶ ͷΈ ºεϙʔπ ɾࠓޙ͍ʹͳΓͦ͏