Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介:Fine-Grained Contextual Predictions for Ha...
Search
Shohei Okada
November 04, 2014
Research
0
88
文献紹介:Fine-Grained Contextual Predictions for Hard Sentiment Words
動画
https://www.youtube.com/watch?v=69WnudOGIBw&list=PL6SnxjlP6lpHdWaieYa0BGVuj8fgfiIw1&index=47
Shohei Okada
November 04, 2014
Tweet
Share
More Decks by Shohei Okada
See All by Shohei Okada
たった 1 枚の PHP ファイルで実装する MCP サーバ / MCP Server with Vanilla PHP
okashoi
1
170
どうして手を動かすよりもチーム内のコードレビューを優先するべきなのか
okashoi
3
1.4k
パスワードのハッシュ、ソルトってなに? - What is hash and salt for password?
okashoi
3
210
設計の考え方 - インターフェースと腐敗防止層編 #phpconfuk / Interface and Anti Corruption Layer
okashoi
11
3.8k
"config" ってなんだ? / What is "config"?
okashoi
0
1.2k
ファイル先頭の use の意味、説明できますか? 〜PHP の namespace と autoloading の関係を正しく理解しよう〜 / namespace and autoloading in php
okashoi
4
1.6k
MySQL のインデックスの種類をおさらいしよう! / overviewing indexes in MySQL
okashoi
0
890
PHP における静的解析(あるいはそもそも静的解析とは) / #phpcondo_yasai static analysis for PHP
okashoi
1
600
【PHPカンファレンス沖縄 2023】素朴で考慮漏れのある PHP コードをテストコードとともに補強していく(ライブコーディング補足資料) / #phpcon_okinawa 2023 livecoding supplementary material
okashoi
3
1.9k
Other Decks in Research
See All in Research
Self-supervised audiovisual representation learning for remote sensing data
satai
3
210
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
150
Vision And Languageモデルにおける異なるドメインでの継続事前学習が性能に与える影響の検証 / YANS2024
sansan_randd
1
110
ストレス計測方法の確立に向けたマルチモーダルデータの活用
yurikomium
0
570
Weekly AI Agents News!
masatoto
33
68k
実行環境に中立なWebAssemblyライブマイグレーション機構/techtalk-2025spring
chikuwait
0
220
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
240
When Submarine Cables Go Dark: Examining the Web Services Resilience Amid Global Internet Disruptions
irvin
0
200
さくらインターネット研究所 アップデート2025年
matsumoto_r
PRO
0
640
RHO-1: Not All Tokens Are What You Need
sansan_randd
1
110
ことばの意味を計算するしくみ
verypluming
11
2.6k
Sosiaalisen median katsaus 03/2025 + tekoäly
hponka
0
1.3k
Featured
See All Featured
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Building Applications with DynamoDB
mza
95
6.5k
Making Projects Easy
brettharned
116
6.3k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
5
210
Fireside Chat
paigeccino
37
3.5k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Bash Introduction
62gerente
614
210k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.8k
Building Adaptive Systems
keathley
43
2.6k
Making the Leap to Tech Lead
cromwellryan
134
9.3k
How GitHub (no longer) Works
holman
314
140k
Adopting Sorbet at Scale
ufuk
77
9.4k
Transcript
文献紹介 2014/11/04 長岡技術科学大学 自然言語処理研究室 岡田 正平
文献情報 Sebastian Ebert and Hinrich Schütze Fine-Grained Contextual Predictions for
Hard Sentiment Words In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, pp 1210-1215. 2014. 2014/11/04 文献紹介 2
概要 仮説 「高精度な感情解析には,感情極性が異なる語義を 正確に識別することが不可欠」 語義による感情極性の異なりを扱う 1. “hard”という語に対して解析(仮説の検証) 2. 語義曖昧性解消のための特徴量を学習 3.
実験による精度向上の確認 2014/11/04 文献紹介 3
概要 仮説 「高精度な感情解析には,感情極性が異なる語義を 正確に識別することが不可欠」 語義による感情極性の異なりを扱う 1. “hard”という語に対して解析(仮説の検証) 2. 語義曖昧性解消のための特徴量を学習 3.
実験による精度向上の確認 2014/11/04 文献紹介 4
Linguistic analysis of sentiment contexts of “hard”
語 “hard” についての解析 • Amazon Product Review Data より 5,000
文脈を取得 • うち 4,600 文脈に対して解析を行う – 語義・極性・文脈 – 語義は Cobuild (Sinclair, 1987) をベースにしている – Cobuild 16 語義 → 10 語義 • 200 文脈に対して2名のPhD学生が 10語義 をアノテート – κ=0.78 (かなりの一致) 2014/11/04 文献紹介 6
2014/11/04 文献紹介 7
2014/11/04 文献紹介 8
概要 仮説 「高精度な感情解析には,感情極性が異なる語義を 正確に識別することが不可欠」 語義による感情極性の異なりを扱う 1. “hard”という語に対して解析(仮説の検証) 2. 語義曖昧性解消のための特徴量を学習 3.
実験による精度向上の確認 2014/11/04 文献紹介 9
Deep learning features
Deep learning features 語義曖昧性解消を行えるようにするため Deep learning を 用いて以下2つの特徴量を学習する • word
embeddings • deep learning language model (LM) – 文脈を推定するモデル (predicted context distribution (PCD)) 2014/11/04 文献紹介 11 “serious” “difficult” word context “a * problem”
• vectorized log-bilinear language model (vLBL) = 1 , ⋯
, : context : input representation of word : target representation 2014/11/04 文献紹介 12
• 語と文脈の類似度が計算できる • パラメータθは – 入力空間および対象空間 の word embeddings –
文中の位置による重みベクトル ∈ – バイアス ∈ 2014/11/04 文献紹介 13
• English Wikipedia 中の頻出 100,000 語 が対象 • 無作為に抽出された13億の7-gramを用いて4回学習 2014/11/04
文献紹介 14
概要 仮説 「高精度な感情解析には,感情極性が異なる語義を 正確に識別することが不可欠」 語義による感情極性の異なりを扱う 1. “hard”という語に対して解析(仮説の検証) 2. 語義曖昧性解消のための特徴量を学習 3.
実験による精度向上の確認 2014/11/04 文献紹介 15
Experiments
実験 1 • 語義曖昧性解消に統計的な分類モデルを使用 – liblinear を利用 • 3種の素性 –
ngrams (n = 1~3) – embeddings (Blacoe and Lapata (2012)) – PCDs (提案手法) • 4,600 文脈 → training: 4,000, development: 600 2014/11/04 文献紹介 17
2014/11/04 文献紹介 18
実験 2 • 4,000 文脈を 100 クラスタにクラスタリング • 各クラスタにアノテーションを行い同様の実験 –
アノテーションコストの軽減 2014/11/04 文献紹介 19
2014/11/04 文献紹介 20
実験 3 • テストセットに対しての性能評価(オープンテスト) 2014/11/04 文献紹介 21