Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介:Fine-Grained Contextual Predictions for Ha...
Search
Shohei Okada
November 04, 2014
Research
0
85
文献紹介:Fine-Grained Contextual Predictions for Hard Sentiment Words
動画
https://www.youtube.com/watch?v=69WnudOGIBw&list=PL6SnxjlP6lpHdWaieYa0BGVuj8fgfiIw1&index=47
Shohei Okada
November 04, 2014
Tweet
Share
More Decks by Shohei Okada
See All by Shohei Okada
どうして手を動かすよりもチーム内のコードレビューを優先するべきなのか
okashoi
3
1.1k
パスワードのハッシュ、ソルトってなに? - What is hash and salt for password?
okashoi
3
160
設計の考え方 - インターフェースと腐敗防止層編 #phpconfuk / Interface and Anti Corruption Layer
okashoi
10
3.3k
"config" ってなんだ? / What is "config"?
okashoi
0
1k
ファイル先頭の use の意味、説明できますか? 〜PHP の namespace と autoloading の関係を正しく理解しよう〜 / namespace and autoloading in php
okashoi
3
1.4k
MySQL のインデックスの種類をおさらいしよう! / overviewing indexes in MySQL
okashoi
0
780
PHP における静的解析(あるいはそもそも静的解析とは) / #phpcondo_yasai static analysis for PHP
okashoi
1
530
【PHPカンファレンス沖縄 2023】素朴で考慮漏れのある PHP コードをテストコードとともに補強していく(ライブコーディング補足資料) / #phpcon_okinawa 2023 livecoding supplementary material
okashoi
3
1.9k
その説明、コードコメントに書く?コミットメッセージに書く? プルリクエストに書く? - #phpconfuk 2023
okashoi
15
5.1k
Other Decks in Research
See All in Research
「熊本県内バス・電車無料デー」の振り返りとその後の展開@土木計画学SS:成功失敗事例に学ぶ公共交通運賃設定
trafficbrain
0
230
ドローンやICTを活用した持続可能なまちづくりに関する研究
nro2daisuke
0
160
Evaluating Tool-Augmented Agents in Remote Sensing Platforms
satai
3
150
ECCV2024読み会: Minimalist Vision with Freeform Pixels
hsmtta
1
440
非ガウス性と非線形性に基づく統計的因果探索
sshimizu2006
0
570
ナレッジプロデューサーとしてのミドルマネージャー支援 - MIMIGURI「知識創造室」の事例の考察 -
chiemitaki
0
230
AWS 音声基盤モデル トーク解析AI MiiTelの音声処理について
ken57
0
150
Human-Informed Machine Learning Models and Interactions
hiromu1996
2
580
20250226 NLP colloquium: "SoftMatcha: 10億単語規模コーパス検索のための柔らかくも高速なパターンマッチャー"
de9uch1
0
110
Prithvi-EO-2.0: A Versatile Multi-Temporal Foundation Model for Earth Observation Applications
satai
3
170
PhD Defence: Considering Temporal and Contextual Information for Lexical Semantic Change Detection
a1da4
0
130
複数データセットを用いた動作認識
yuyay
0
120
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Product Roadmaps are Hard
iamctodd
PRO
51
11k
How to Think Like a Performance Engineer
csswizardry
22
1.4k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.3k
How to Ace a Technical Interview
jacobian
276
23k
What's in a price? How to price your products and services
michaelherold
244
12k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
115
51k
Into the Great Unknown - MozCon
thekraken
35
1.7k
Building Applications with DynamoDB
mza
93
6.2k
Become a Pro
speakerdeck
PRO
26
5.2k
How GitHub (no longer) Works
holman
314
140k
Transcript
文献紹介 2014/11/04 長岡技術科学大学 自然言語処理研究室 岡田 正平
文献情報 Sebastian Ebert and Hinrich Schütze Fine-Grained Contextual Predictions for
Hard Sentiment Words In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, pp 1210-1215. 2014. 2014/11/04 文献紹介 2
概要 仮説 「高精度な感情解析には,感情極性が異なる語義を 正確に識別することが不可欠」 語義による感情極性の異なりを扱う 1. “hard”という語に対して解析(仮説の検証) 2. 語義曖昧性解消のための特徴量を学習 3.
実験による精度向上の確認 2014/11/04 文献紹介 3
概要 仮説 「高精度な感情解析には,感情極性が異なる語義を 正確に識別することが不可欠」 語義による感情極性の異なりを扱う 1. “hard”という語に対して解析(仮説の検証) 2. 語義曖昧性解消のための特徴量を学習 3.
実験による精度向上の確認 2014/11/04 文献紹介 4
Linguistic analysis of sentiment contexts of “hard”
語 “hard” についての解析 • Amazon Product Review Data より 5,000
文脈を取得 • うち 4,600 文脈に対して解析を行う – 語義・極性・文脈 – 語義は Cobuild (Sinclair, 1987) をベースにしている – Cobuild 16 語義 → 10 語義 • 200 文脈に対して2名のPhD学生が 10語義 をアノテート – κ=0.78 (かなりの一致) 2014/11/04 文献紹介 6
2014/11/04 文献紹介 7
2014/11/04 文献紹介 8
概要 仮説 「高精度な感情解析には,感情極性が異なる語義を 正確に識別することが不可欠」 語義による感情極性の異なりを扱う 1. “hard”という語に対して解析(仮説の検証) 2. 語義曖昧性解消のための特徴量を学習 3.
実験による精度向上の確認 2014/11/04 文献紹介 9
Deep learning features
Deep learning features 語義曖昧性解消を行えるようにするため Deep learning を 用いて以下2つの特徴量を学習する • word
embeddings • deep learning language model (LM) – 文脈を推定するモデル (predicted context distribution (PCD)) 2014/11/04 文献紹介 11 “serious” “difficult” word context “a * problem”
• vectorized log-bilinear language model (vLBL) = 1 , ⋯
, : context : input representation of word : target representation 2014/11/04 文献紹介 12
• 語と文脈の類似度が計算できる • パラメータθは – 入力空間および対象空間 の word embeddings –
文中の位置による重みベクトル ∈ – バイアス ∈ 2014/11/04 文献紹介 13
• English Wikipedia 中の頻出 100,000 語 が対象 • 無作為に抽出された13億の7-gramを用いて4回学習 2014/11/04
文献紹介 14
概要 仮説 「高精度な感情解析には,感情極性が異なる語義を 正確に識別することが不可欠」 語義による感情極性の異なりを扱う 1. “hard”という語に対して解析(仮説の検証) 2. 語義曖昧性解消のための特徴量を学習 3.
実験による精度向上の確認 2014/11/04 文献紹介 15
Experiments
実験 1 • 語義曖昧性解消に統計的な分類モデルを使用 – liblinear を利用 • 3種の素性 –
ngrams (n = 1~3) – embeddings (Blacoe and Lapata (2012)) – PCDs (提案手法) • 4,600 文脈 → training: 4,000, development: 600 2014/11/04 文献紹介 17
2014/11/04 文献紹介 18
実験 2 • 4,000 文脈を 100 クラスタにクラスタリング • 各クラスタにアノテーションを行い同様の実験 –
アノテーションコストの軽減 2014/11/04 文献紹介 19
2014/11/04 文献紹介 20
実験 3 • テストセットに対しての性能評価(オープンテスト) 2014/11/04 文献紹介 21