Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
オブザーバビリティの Primary Signals
Search
Takafumi ONAKA
PRO
April 10, 2024
Technology
2
5.2k
オブザーバビリティの Primary Signals
2024-04-10 OpenTelemetry Observability運用の実例 Lunch LT
https://findy.connpass.com/event/313260/
Takafumi ONAKA
PRO
April 10, 2024
Tweet
Share
More Decks by Takafumi ONAKA
See All by Takafumi ONAKA
強いチームと開発生産性
onk
PRO
40
16k
ADRを運用して3年経った僕らの現在地
onk
PRO
21
21k
1文字エイリアスのすゝめ
onk
PRO
0
40
すこやかなサービス運営のための PWG (Performance Working Group)
onk
PRO
0
690
Cache Stampede
onk
PRO
1
2.1k
ORM - Object-relational mapping
onk
PRO
2
3.6k
デュアルトラックアジャイルとの向き合い方
onk
PRO
5
12k
技術記事を書く&楽しむチームの作り方
onk
PRO
0
1.7k
グルーミングしながら進めるプロダクト開発
onk
PRO
0
2.1k
Other Decks in Technology
See All in Technology
大規模サービスにおける カスケード障害
takumiogawa
3
800
LLM とプロンプトエンジニアリング/チューターをビルドする / LLM, Prompt Engineering and Building Tutors
ks91
PRO
1
210
Android는 어떻게 화면을 그릴까?
davidkwon7
0
100
Webアプリを Lambdaで動かすまでに考えること / How to implement monolithic Lambda Web Application
_kensh
7
1.2k
Zabbixチョットデキルとは!?
kujiraitakahiro
0
180
開発視点でAWS Signerを考えてみよう!! ~コード署名のその先へ~
masakiokuda
3
130
Cursor AgentによるパーソナルAIアシスタント育成入門―業務のプロンプト化・MCPの活用
os1ma
8
2.5k
ソフトウェア開発現代史: "LeanとDevOpsの科学"の「科学」とは何か? - DORA Report 10年の変遷を追って - #DevOpsDaysTokyo
takabow
0
190
Lightdashの利活用状況 ー導入から2年経った現在地_20250409
hirokiigeta
2
270
【2025年度新卒技術研修】100分で学ぶ サイバーエージェントのデータベース 活用事例とMySQLパフォーマンス調査
cyberagentdevelopers
PRO
4
6.3k
AIエージェントの地上戦 〜開発計画と運用実践 / 2025/04/08 Findy W&Bミートアップ #19
smiyawaki0820
25
8.5k
ペアーズにおけるData Catalog導入の取り組み
hisamouna
0
270
Featured
See All Featured
Become a Pro
speakerdeck
PRO
27
5.3k
[RailsConf 2023] Rails as a piece of cake
palkan
54
5.4k
Git: the NoSQL Database
bkeepers
PRO
430
65k
Statistics for Hackers
jakevdp
798
220k
Embracing the Ebb and Flow
colly
85
4.6k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.6k
StorybookのUI Testing Handbookを読んだ
zakiyama
29
5.6k
Documentation Writing (for coders)
carmenintech
69
4.7k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
12k
Code Reviewing Like a Champion
maltzj
522
39k
Agile that works and the tools we love
rasmusluckow
328
21k
Done Done
chrislema
183
16k
Transcript
オブザーバビリティの Primary Signals id:onk 2024-04-10 OpenTelemetry Observability運用の実例 Lunch LT 1
自己紹介 • 大仲 能史 a.k.a. id:onk • 株式会社はてな ◦ チーフエンジニア
◦ Mackerel開発チーム 2
3
4
5 今日の話
6 オブザーバビリティの Primary Signals
オブザーバビリティのPrimary Signals 7 https://github.com/cncf/tag-observability/blob/whitepaper-v1.0.0/whitepaper.md
オブザーバビリティのPrimary Signals • Metrics: システムの健康状態を高レベルで示す • Logs: イベントの詳細を提供する • Traces:
リクエストの流れを追跡する • … 8
9 Primary Signalsは、大局 から詳細までシステムを多 角的に理解するために必要
メトリックの良いところ • パフォーマンス、効率性 ◦ ログやトレースを大量に収集・分析するのは重い ◦ お金がかかる 10 https://dev.henry.jp/entry/observability-and-cost
メトリックの良いところ • 監視やトレンド分析の容易性 ◦ 数値なので異常値の検出やアラート設定が容易で、 監視しやすい、可視化しやすい ◦ ダッシュボードを構築して、システムの健康状態を 一目で把握できる ◦
長期的なパフォーマンス変化を追跡できる 11
最近目にするオブザーバビリティ • トレース・ログに重心が寄っている ◦ メトリックは既存の監視で既にカバーされている領域 ◦ オブザーバビリティを高めるには、現状のメトリックだ と詳細度が足りないことも多い • とはいえPrimary
Signalsなので大事 ◦ コストが安いし、キャパシティプランニングや ふりかえりに必要 12
Primary Signals • メトリック ◦ システム全体の健康とパフォーマンスの概要 システムが期待通りに機能しているかを把握する • ログ ◦
何が起きているか、どのように発生しているのかの詳細 • トレース ◦ システムの内部動作とリクエストの流れを理解するビュー 複雑な問題の診断に有効 13
14 OpenTelemetryで メトリックを収集する
OpenTelemetryでメトリックを収集 • 既存の監視が既に構築されている ◦ メトリックを収集できていて、直ちに困ってはいない • OpenTelemetryになるとここが嬉しい ◦ メトリックがAttributeを持つのでO11yを高めやすい ◦
将来的にOTelがメトリック収集方法の標準になる見込み ◦ 他のテレメトリーデータとの相互操作性 ▪ 例えばメトリックの異常値からトレースに簡単に遷移するとか 15
16 どうやって始めれば?
17 OpenTelemetry Collectorを使え
OpenTelemetry Collector 18 https://opentelemetry.io/docs/collector/ https://opentelemetry.io/docs/
OpenTelemetry Collector • Receiver ◦ Collectorがデータを受信する方法を提供する ◦ LISTENするだけじゃなく、ポーリングも可能 19
ホストメトリックの計装 • ホストメトリック ◦ CPU使用率 ◦ メモリ使用率 ◦ ディスク使用率 ◦
ネットワーク I/O ◦ … 20
ホストメトリックの計装 • Host Metrics Receiverを使う • OpenTelemetry Collectorのreceiversに設定 すると、自身のホストメトリックを収集できる 21
ホストメトリックの計装 22 https://mackerel.io/ja/blog/entry/tech/sending-host-metrics-to-mackerel-with-opentelemetry-collector
ミドルウェアのメトリックの計装 • ミドルウェアのメトリック ◦ nginx ◦ MySQL ◦ Redis ◦
Elasticsearch ◦ … 23
ミドルウェアのメトリックの計装 • OpenTelemetry Collector Contribにある 24
ミドルウェアのメトリックの計装 • OpenTelemetry Collector Contribにある 25 https://kmuto.hatenablog.com/entry/2024/03/24/215200
ミドルウェアのメトリックの計装 • ポーリングするReceiverの作り ◦ 既にあるエンドポイントからメトリックを収集 ▪ nginxならhttp_stub_status moduleで出力している ◦ 収集したメトリックをOpenTelemetry形式に変換
◦ 収集する頻度はカスタマイズ可能 26
アプリケーションのメトリックの計装 • アプリケーションのメトリック ◦ アクティブユーザー数 ◦ データベースの応答時間 ◦ キャッシュヒット率 ◦
… 27
アプリケーションのメトリックの計装 • 自動計装はまだまだ足りない ◦ 例えばOpenTelemetry Ruby Contribにメトリックの 自動計装は存在していない 28
アプリケーションのメトリックの計装 29
30 それでも自動計装に なるべく乗りつつ メトリックが欲しい!
31 Span Metrics Connector
Connectorとは • ReceiverとExporterの2つの役割を持つ • 異なるテレメトリーパイプラインを繋ぎ合わ せる 32 https://opentelemetry.io/docs/collector/building/connector/
Connectorとは • OpenTelemetry Casual Talkも見てね 33 https://speakerdeck.com/rnakamine/building-a-servicemap-with-service-graph-connector
Span Metrics Connectorとは • トレースからメトリックを生成する ◦ R.E.D メソッドのメトリックを収集できる ◦ Request,
Error, Duration 34
Span Metrics Connectorとは • トレースは自動計装されている ◦ 主にシステム境界でspanが切られている ▪ HTTPリクエスト ▪
SQLの実行 • トレースを集計するとメトリックになる ◦ Request数、Error数、Duration(histogram) 35
メトリックを収集したら • メトリックを集計するとダッシュボードになる ◦ どこに時間が掛かっているのか可視化したい ▪ HTTPリクエストやSQLの実行に掛かった時間を積み上げグラ フに ◦ 特定のクエリにかかった時間のパーセンタイル表示
▪ 各Durationをhistogramで保存しているので、計算可能 36
37 OpenTelemetryで メトリックを収集する その他の方法
その他の方法 • 既存のプラグインを利用する ◦ 各バックエンド向けに実装されたプラグインを活用して 今まで通りにメトリックを収集する ◦ 各バックエンド向けに実装されたReceiverに送信する と、メトリックをOpenTelemetryに加工し、ラベル付 きメトリックとしてバックエンドに送信する
38
その他の方法 39 https://sfujiwara.hatenablog.com/entry/maprobe-otel-metrics • 既存のバックエンド向けのエージェントから OTLPで送信する
40 まとめ
まとめ • 各Primary Signalの立ち位置 ◦ メトリックは引き続き大事 • OpenTelemetryでのメトリック収集の始め方 ◦ CollectorにReceiverを入れると収集できるよ
◦ SpanMetricsConnectorで始めることもできる 41