Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Hyperloglog 简析
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
onlyice
January 25, 2021
Programming
0
170
Hyperloglog 简析
描述了在面对海量数据时,如何利用 HyperLogLog 做去重和统计,以及它背后的概率原理。
onlyice
January 25, 2021
Tweet
Share
Other Decks in Programming
See All in Programming
今こそ知るべき耐量子計算機暗号(PQC)入門 / PQC: What You Need to Know Now
mackey0225
3
370
React 19でつくる「気持ちいいUI」- 楽観的UIのすすめ
himorishige
11
5.9k
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
680
フロントエンド開発の勘所 -複数事業を経験して見えた判断軸の違い-
heimusu
7
2.8k
AIフル活用時代だからこそ学んでおきたい働き方の心得
shinoyu
0
130
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
登壇資料を作る時に意識していること #登壇資料_findy
konifar
4
940
開発者から情シスまで - 多様なユーザー層に届けるAPI提供戦略 / Postman API Night Okinawa 2026 Winter
tasshi
0
190
AgentCoreとHuman in the Loop
har1101
5
220
AIエージェントのキホンから学ぶ「エージェンティックコーディング」実践入門
masahiro_nishimi
3
290
AIによる高速開発をどう制御するか? ガードレール設置で開発速度と品質を両立させたチームの事例
tonkotsuboy_com
6
1.9k
余白を設計しフロントエンド開発を 加速させる
tsukuha
7
2.1k
Featured
See All Featured
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
280
GitHub's CSS Performance
jonrohan
1032
470k
The Limits of Empathy - UXLibs8
cassininazir
1
210
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
140
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
110
The Cult of Friendly URLs
andyhume
79
6.8k
WENDY [Excerpt]
tessaabrams
9
36k
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
140
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.8k
Testing 201, or: Great Expectations
jmmastey
46
8k
Transcript
HyperLogLog 简析 林志衡 blog.zhiheng.io 2021/01/23
问题 大数据量去重统计,比如页面 UV。 2
传统方法 把全部数据加入 Set。 优点:精确 缺点:内存消耗巨大 概率方法 HyperLogLog 算法。 优点:内在消耗很少 缺点:不精确,但误差可以控
制在 1% 以内 3
什么是概率方法? 4
一个简单例子 将原始数据通过哈希算法随机生成一批均匀 分布在 [0, 1) 的数字。 只要随机过程足够均匀,比如图中的 hash(x)。 那么: 估算的元素个数
= 1 / 最小的 hash 值 缺点: 如果最小的哈希值碰巧很小,那么估算误差 巨大。 5
另外一种方法 计算末尾连续 0 个数。 前提: 1. 哈希算法计算出来的值是均匀分布的整数 2. 均匀分布的整数中,末位是连续 n
个 0 的 概率为 2^n 结论: 计算一批哈希值中,末位连续 0 最多的数字, 比如是连续 R 位。那么: 估算的元素个数 = 2^R 6
连续末尾 0 计数法 缺点: 1. 估算出来的元素个数 只能是 2 的次方 2.
估算结果可能 不精确(当碰巧出现末尾连 续 0 比较多时) 7
优化精确度 使用多个 hash 函数,生成多批哈希值并估算 出多个元素个数值,再做平均值。 优点: 避免单个 hash 函数带来可能的大误差。 缺点:
计算量成倍增加。 8 LogLog 算法, 1. 取哈希值的前几位作为桶(bucket,也称 register) 2. 按前几位的不同,把数字分入不同的桶中 3. 各个桶分别计算出元素个数,再估算出总 数 优点: 1. 通过分桶实现与多个 hash 函数一样的效果 2. 计算量不会大量增加
LogLog 算法 9 比如取前 4 位来生成桶。 有 2^4 即 16
个桶( 表示)。 数字按其前 4 位分到不同桶。 每个桶可以统计出最长的连续末 尾 0 位数,比如图中桶 11 的结 果为 5(R11 表示)。 将不同桶的结果取算术平均数。 套入下面的公式: 即可计算出更精确的元素个数。 CARDINALITY = ⋅ ⋅ 2 1 σ=1 R 没有研究数学推导的过程。 constant 取值为 0.79402。 这种方式的误差在 1.3/ 。
进一步提升精确度 10 SuperLogLog: 去掉异常值、使用几何平均数。 精确度提升到 1.05 。 HyperLogLog: 使用调和平均数。 精确度提升到
1.04 。
Redis 的 HyperLogLog 实现 11 • Hash 值为 64 位整数
• 使用前 14 位作为桶(register),一共 16K 个桶(16384 ) • 误差在 0.81%
参考 12 1. HyperLogLog in Presto: A significantly faster way
to handle cardinality estimation https://engineering.fb.com/2018/12/13/data-infrastructure/hyperloglog/ 2. Redis new data structure: the HyperLogLog http://antirez.com/news/75
Thanks! 林志衡 blog.zhiheng.io 13