Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Hyperloglog 简析
Search
onlyice
January 25, 2021
Programming
0
170
Hyperloglog 简析
描述了在面对海量数据时,如何利用 HyperLogLog 做去重和统计,以及它背后的概率原理。
onlyice
January 25, 2021
Tweet
Share
Other Decks in Programming
See All in Programming
クラシルを支える技術と組織
rakutek
0
200
CSC305 Lecture 02
javiergs
PRO
1
260
私はどうやって技術力を上げたのか
yusukebe
43
18k
iOSエンジニア向けの英語学習アプリを作る!
yukawashouhei
0
190
AI Coding Meetup #3 - 導入セッション / ai-coding-meetup-3
izumin5210
0
650
Web フロントエンドエンジニアに開かれる AI Agent プロダクト開発 - Vercel AI SDK を観察して AI Agent と仲良くなろう! #FEC余熱NIGHT
izumin5210
3
480
The Flutter Journey of Building a Live Streaming App — With a Side of Performance Tuning
u503
1
100
Go Conference 2025: Goで体感するMultipath TCP ― Go 1.24 時代の MPTCP Listener を理解する
takehaya
8
1.6k
あなたの知らない「動画広告」の世界 - iOSDC Japan 2025
ukitaka
0
460
私達はmodernize packageに夢を見るか feat. go/analysis, go/ast / Go Conference 2025
kaorumuta
2
510
overlayPreferenceValue で実現する ピュア SwiftUI な AdMob ネイティブ広告
uhucream
0
170
Swift Concurrency - 状態監視の罠
objectiveaudio
2
490
Featured
See All Featured
The World Runs on Bad Software
bkeepers
PRO
71
11k
Balancing Empowerment & Direction
lara
4
680
Done Done
chrislema
185
16k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
How GitHub (no longer) Works
holman
315
140k
Rails Girls Zürich Keynote
gr2m
95
14k
Writing Fast Ruby
sferik
629
62k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
KATA
mclloyd
32
15k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
The Cost Of JavaScript in 2023
addyosmani
53
9k
Transcript
HyperLogLog 简析 林志衡 blog.zhiheng.io 2021/01/23
问题 大数据量去重统计,比如页面 UV。 2
传统方法 把全部数据加入 Set。 优点:精确 缺点:内存消耗巨大 概率方法 HyperLogLog 算法。 优点:内在消耗很少 缺点:不精确,但误差可以控
制在 1% 以内 3
什么是概率方法? 4
一个简单例子 将原始数据通过哈希算法随机生成一批均匀 分布在 [0, 1) 的数字。 只要随机过程足够均匀,比如图中的 hash(x)。 那么: 估算的元素个数
= 1 / 最小的 hash 值 缺点: 如果最小的哈希值碰巧很小,那么估算误差 巨大。 5
另外一种方法 计算末尾连续 0 个数。 前提: 1. 哈希算法计算出来的值是均匀分布的整数 2. 均匀分布的整数中,末位是连续 n
个 0 的 概率为 2^n 结论: 计算一批哈希值中,末位连续 0 最多的数字, 比如是连续 R 位。那么: 估算的元素个数 = 2^R 6
连续末尾 0 计数法 缺点: 1. 估算出来的元素个数 只能是 2 的次方 2.
估算结果可能 不精确(当碰巧出现末尾连 续 0 比较多时) 7
优化精确度 使用多个 hash 函数,生成多批哈希值并估算 出多个元素个数值,再做平均值。 优点: 避免单个 hash 函数带来可能的大误差。 缺点:
计算量成倍增加。 8 LogLog 算法, 1. 取哈希值的前几位作为桶(bucket,也称 register) 2. 按前几位的不同,把数字分入不同的桶中 3. 各个桶分别计算出元素个数,再估算出总 数 优点: 1. 通过分桶实现与多个 hash 函数一样的效果 2. 计算量不会大量增加
LogLog 算法 9 比如取前 4 位来生成桶。 有 2^4 即 16
个桶( 表示)。 数字按其前 4 位分到不同桶。 每个桶可以统计出最长的连续末 尾 0 位数,比如图中桶 11 的结 果为 5(R11 表示)。 将不同桶的结果取算术平均数。 套入下面的公式: 即可计算出更精确的元素个数。 CARDINALITY = ⋅ ⋅ 2 1 σ=1 R 没有研究数学推导的过程。 constant 取值为 0.79402。 这种方式的误差在 1.3/ 。
进一步提升精确度 10 SuperLogLog: 去掉异常值、使用几何平均数。 精确度提升到 1.05 。 HyperLogLog: 使用调和平均数。 精确度提升到
1.04 。
Redis 的 HyperLogLog 实现 11 • Hash 值为 64 位整数
• 使用前 14 位作为桶(register),一共 16K 个桶(16384 ) • 误差在 0.81%
参考 12 1. HyperLogLog in Presto: A significantly faster way
to handle cardinality estimation https://engineering.fb.com/2018/12/13/data-infrastructure/hyperloglog/ 2. Redis new data structure: the HyperLogLog http://antirez.com/news/75
Thanks! 林志衡 blog.zhiheng.io 13