Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Sports Analyst Meetup #5 LT - 目指せPGAツアー賞金王
Search
OpenJNY
November 02, 2019
Science
1
1.2k
Sports Analyst Meetup #5 LT - 目指せPGAツアー賞金王
PGA Tour データを GLM/GAM で簡単に分析してみました。
OpenJNY
November 02, 2019
Tweet
Share
More Decks by OpenJNY
See All by OpenJNY
Linux Networking Tools: 101
openjny
63
17k
BERT の解剖学: interpret-text による自然言語処理 (NLP) モデル解釈
openjny
11
3.1k
NSG フローログを支える技術 - NVF Advanced Flow Logging
openjny
1
830
グラフ分析ナイト - グラフデータ分析 入門編
openjny
2
960
Representation Learning for Scale-free Networks: スケールフリーネットワークに対する表現学習
openjny
0
67
A Degeneracy Framework for Graph Similarity: グラフ類似度のための縮退フレームワーク
openjny
0
260
Handbook of Knowledge Representation - Chapter 2: Satisfiability Solvers
openjny
0
140
Other Decks in Science
See All in Science
Causal discovery based on non-Gaussianity and nonlinearity
sshimizu2006
0
230
Online Feedback Optimization
floriandoerfler
0
920
20分で分かる Human-in-the-Loop 機械学習におけるアノテーションとヒューマンコンピューターインタラクションの真髄
hurutoriya
5
2.8k
私たちのプロダクトにとってのよいテスト/good test for our products
camel_404
0
250
証明支援系LEANに入門しよう
unaoya
0
660
最適化超入門
tkm2261
14
3.5k
はじめてのバックドア基準:あるいは、重回帰分析の偏回帰係数を因果効果の推定値として解釈してよいのか問題
takehikoihayashi
2
1.4k
240510 COGNAC LabChat
kazh
0
180
【健康&筋肉と生産性向上の関連性】 【Google Cloudを企業で運用する際の知識】 をお届け
yasumuusan
0
470
学術講演会中央大学学員会八王子支部
tagtag
0
270
LIMEを用いた判断根拠の可視化
kentaitakura
0
440
All-in-One Bioinformatics Platform Realized with Snowflake ~ From In Silico Drug Discovery, Disease Variant Analysis, to Single-Cell RNA-seq
ktatsuya
0
310
Featured
See All Featured
BBQ
matthewcrist
87
9.5k
Java REST API Framework Comparison - PWX 2021
mraible
29
8.4k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
430
Raft: Consensus for Rubyists
vanstee
137
6.8k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
Visualization
eitanlees
146
15k
RailsConf 2023
tenderlove
29
1k
Docker and Python
trallard
44
3.3k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.3k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.2k
Designing for humans not robots
tammielis
250
25k
Transcript
目指せ PGA ツアー賞金王
$ about-me . ├── 山口順也 (Junya Yamaguchi) │ ├── @OpenJNY
│ ├── 某パブリッククラウドで Support Eng. やってます (新卒 1 年目) │ └── Networking の勉強中 (LB, WAF, etc) └── 東京工業大学・大学院で人工知能基礎と機械学習を勉強してました ├── 理論よりの本 (e.g. PRML, MLaPP) が好き ├── 卒論は「SAT ソルバ × GPGPU」 ├── 修論は「SAT ソルバ × グラフ埋め込み」 └── Kaggle はやってません グラフ埋め込みは、めちゃくちゃおもしろい&今ホットなト ピックなので、興味あるかたいれば是非説明したい内容
None
None
LT テーマ: PGA ツアーの stats を GLM/GAM で分析してみる - https://www.kaggle.com/bradklassen/pga-tour-20102018-data
- LT の目的: - Python の GAM ライブラリ pyGAM を知る - PGA ツアーで賞金王になるための知見をゴル活に活かす - ノートブックは以下の URL で公開しています - https://www.kaggle.com/juyamagu/pga-tour-analysis-by-gam
背景: モデルの入力次元と解釈性 - 3 以上の次元を持つ入力を扱う関数は、人 間が視覚的に解釈できない - なので解釈可能にするには、入力を 1 次
元ないしは 2 次元に抑える必要がある - 複数の入力を一気に扱う機械学習モデ ル (e.g. DNN) などは解釈できない… N/A 2 次元以下の入力の関数を 組み合わせたモデルなら視覚的に解釈可能
GLM と GAM • 一般化線形モデル (Generalized Linear Model; GLM) •
一般化加法モデル (Generalized Linear Model; GLM) GLM の詳細は緑本や MLaPP 9章、GAM の詳細はカステラ本 9章を参照くださいm(_ _)m Hastie, T. J.; Tibshirani, R. J. (1990) Nelder, J.; Wedderburn, R. (1972)
pyGAM https://pygam.readthedocs.io/en/latest/
$ pip install pygam
None
データ概観: スキーマ カラム名 説明 PlayerName 名前 Season 年度 Money 年間獲得賞金
($) DrivingDistance 平均ドライバー飛距離 (yard) DrivingAccuracy フェアウェイ キープ率 DistanceEfficiency 飛距離/スピードの平均 NonDrivingDistance 平地での平均飛距離 (yard) カラム名 説明 BallSpeed ボールの平均スピード ScramblingSand バンカーからのスクランブル率 ScramblingFringe フリンジからのスクランブル率 ScramblingRough ラフからのスクランブル率 ThreePutRate スリーパットを叩いたホール率 BirdieConversion バーディ以上のホール率
データ概観: 相関係数 賞金と正の相関が強いもの - ドライバーの距離 - 飛距離の効率性 (スピン量) - ボールスピード
- ラフからのリカバリの上手さ - バーディよりよい成績でホールを終える 率 賞金と負の相関が認められるもの - ドライバー以外のショット飛距離 - 3 パットするホールの割合
PyGAM: GLM による Money 予測
None
PyGAM: GAM による Money の予測 l (Linear) を s (Spline)
に置換するだけ
None
GAM の表現力の豊かさ GLM GAM 一般化加法モデル 一般化線形モデル ✓ BirdieConversion (バーディより良い成績のホー ル率)
が大きいほど、賞金が稼げる傾向にある ✓ BirdieConversion (バーディより良い成績のホー ル率) が大きいほど、賞金が稼げる傾向にある ✓ ただし33 パーセント付近に「大きな壁」の存在 ✓ < 33% だと、賞金の伸びは限定的 ✓ 壁を超えると一気に賞金獲得の期待が高まる
None
含意
None