Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A Degeneracy Framework for Graph Similarity: グラ...
Search
OpenJNY
November 04, 2018
Technology
0
230
A Degeneracy Framework for Graph Similarity: グラフ類似度のための縮退フレームワーク
OpenJNY
November 04, 2018
Tweet
Share
More Decks by OpenJNY
See All by OpenJNY
Linux Networking Tools: 101
openjny
63
17k
BERT の解剖学: interpret-text による自然言語処理 (NLP) モデル解釈
openjny
11
3k
NSG フローログを支える技術 - NVF Advanced Flow Logging
openjny
1
790
グラフ分析ナイト - グラフデータ分析 入門編
openjny
2
950
Sports Analyst Meetup #5 LT - 目指せPGAツアー賞金王
openjny
1
1.1k
Representation Learning for Scale-free Networks: スケールフリーネットワークに対する表現学習
openjny
0
57
Handbook of Knowledge Representation - Chapter 2: Satisfiability Solvers
openjny
0
120
Other Decks in Technology
See All in Technology
Amazon Personalizeのレコメンドシステム構築、実際何するの?〜大体10分で具体的なイメージをつかむ〜
kniino
1
100
OCI Network Firewall 概要
oracle4engineer
PRO
0
4.1k
BLADE: An Attempt to Automate Penetration Testing Using Autonomous AI Agents
bbrbbq
0
300
Application Development WG Intro at AppDeveloperCon
salaboy
0
180
ISUCONに強くなるかもしれない日々の過ごしかた/Findy ISUCON 2024-11-14
fujiwara3
8
870
ドメイン名の終活について - JPAAWG 7th -
mikit
33
20k
[CV勉強会@関東 ECCV2024 読み会] オンラインマッピング x トラッキング MapTracker: Tracking with Strided Memory Fusion for Consistent Vector HD Mapping (Chen+, ECCV24)
abemii
0
220
隣接領域をBeyondするFinatextのエンジニア組織設計 / beyond-engineering-areas
stajima
1
270
Why does continuous profiling matter to developers? #appdevelopercon
salaboy
0
180
Amplify Gen2 Deep Dive / バックエンドの型をいかにしてフロントエンドへ伝えるか #TSKaigi #TSKaigiKansai #AWSAmplifyJP
tacck
PRO
0
370
リンクアンドモチベーション ソフトウェアエンジニア向け紹介資料 / Introduction to Link and Motivation for Software Engineers
lmi
4
300k
【Startup CTO of the Year 2024 / Audience Award】アセンド取締役CTO 丹羽健
niwatakeru
0
980
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
405
65k
YesSQL, Process and Tooling at Scale
rocio
169
14k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
250
21k
Docker and Python
trallard
40
3.1k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.8k
GitHub's CSS Performance
jonrohan
1030
460k
Raft: Consensus for Rubyists
vanstee
136
6.6k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
27
4.3k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
28
2k
Building an army of robots
kneath
302
43k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
410
Transcript
"%FHFOFSBDZ'SBNFXPSLGPS (SBQI4JNJMBSJUZ ౦ژۀେֶҪ্ݚ. ࢁޱॱ . άϥϑྨࣅͷͨΊͷॖୀϑϨʔϜϫʔΫ
จʹ͍ͭͯ
"CPVU1BQFS ‣ ஶऀใ w ΤίʔϧɾϙϦςΫχʔΫʢ¬DPMFQPMZUFDIOJRVFʣͱ Ξςωେֶͷڞಉݚڀ ‣ *+*$"*Ͱ࠾ ‣ બΜͩཧ༝
w άϥϑΧʔωϧʹ ڵຯ͕͋ͬͨ
ΧʔωϧͱͳΜͧ ‣ ΧʔωϧؔʢLFSOFMGVODUJPOʣσʔλಉ࢜ͷྨࣅΛଌΔؔ w ڭࢣ͋ΓֶशͷҝͷػցֶशΞϧΰϦζϜʹɺڭࢣσʔλͱͷۙ͞ͷใ͚ͩΛཔΓ ʹֶशɾ༧ଌΛߦ͏ͷʢFHαϙʔτϕΫτϧϚγϯʣ w ਓؒಉ༷ɿະͳͷʹରͯ͠ɺྨࣅ͕ߴ͍طใͰਪ ‣ ਖ਼֬ʹɺΧʔωϧؔɹɹɹɹɹɹɹɹɹɺ࣍ͷ݅Λຬͨؔ͢
w ରশੑɿ w ਖ਼ఆੑɿ k : × → ℝ+ ∀x, y ∈ : k(x, y) = k(y, x) ∀n ∈ ℕ, x1 , …, xn ∈ : (Gij ) ≜ (k(xi , xj )) ∈ ℝn×n (άϥϜߦྻʢ(SBNNBUSJY (SBNJBOʣͱݺΕΔ ͕ਖ਼ఆߦྻ ͞Βʹݫີʹɺ͜Εʮਖ਼ఆΧʔωϧʯʮϚʔαʔΧʔ ωϧʯͱݺΕΔಛघͳΧʔωϧؔͰ͋Δ͕ɺඇৗʹศརͳ ͷͰҰൠతͳఆٛͱͳ͍ͬͯΔ
‣ άϥϑΧʔωϧάϥϑͷϖΞΛೖྗͱ͢ΔΧʔωϧؔ w ͭ·ΓɺάϥϑΧʔωϧͰάϥϑಉ࢜ͷྨࣅΛܭࢉ͢Δ͜ͱ͕Ͱ͖Δ ‣ ͳͥάϥϑΧʔωϧ͕ॏཁͳͷ͔ʁ w ੈͷதͷσʔλͷଟ͘ɺہॴతʹେҬతʹԿΒ͔ͷߏΛ͍࣋ͬͯΔ͜ͱ͕ଟ͘ɺ άϥϑϩεϨεͳσʔλදݱͷྑ͍ۙࣅ w
w w w w άϥϑΧʔωϧάϥϑΛೖྗͱͯ͠ѻ͑ΔΞϧΰϦζϜͷઃܭʹཱͭ άϥϑΧʔωϧͱʁ k( , ) = 100
άϥϑΧʔωϧͷԠ༻ྫ https://art.ist.hokudai.ac.jp/~takigawa/data/fpai94_takigawa.pdf
άϥϑΧʔωϧ͕͍ͬͯΔ͜ͱ k( , ) = ⟨ϕ( ), ϕ( )⟩ℋ =
100 ࠶ੜ֩ώϧϕϧτۭؒ 3,)4 σʔλۭؒʢू߹ʣ ℋ = (ℝd, ⟨ ⋅ , ⋅ ⟩ℋ ) ϕ : → ℋ ϕ( ) ϕ( ) ໌ࣔతʹಛྔΛੜʢJFࣸ૾ПΛఆٛʣͯ͠ྑ͍͕ɺΧʔωϧؔΛఆٛ͢Δ͜ͱͰɺରԠ͢Δ 3,)4ٴͼП͕ʢඇ໌ࣔతʹʣҰҙʹܾఆ͞ΕΔ͜ͱ͕ΒΕ͍ͯΔʢΧʔωϧτϦοΫʣɻ ಛϕΫτϧͷมʢҰൠʹඇઢܗࣸ૾ʣ Ұൠʹ࣍ݩEແݶେ ੵ ػցֶशք۾ͰಛۭؒʢGFBUVSFTQBDFʣͱݺΕΔͭ
ΧʔωϧؔͷΘΕ͔ͨ ‣ Χʔωϧ͕ؔྗΛൃش͢Δͷɿ w ಛϕΫτϧʢࣹӨ͢Δؔʣͷઃܭ͕͍͠ͱ͖ w ֶशΞϧΰϦζϜͰඞཁͳܭࢉ͕ɺಛۭؒͰͷσʔλಉ࢜ͷੵʢJFΧʔωϧؔͷग़ྗʣ ͷΈʹґଘ͢Δͱ͖ ‣ ·ͨɺΧʔωϧؔΛ͏ͱઢܗͳֶशΞϧΰϦζϜΛඇઢܗԽͰ͖Δʂ
w తؔΛࣜมܗͨ͠Γ࠷దԽͷରΛղ͘͜ͱͰɺಛϕΫτϧ͕ੵͷܗͰ͔͠ݱΕ ͳ͍ࣜͷΈͷΞϧΰϦζϜΛߏ͢Δ w ʲྫʳΧʔωϧԽLNFEPJET๏ɺΧʔωϧओੳʢ,FSOFM1$"ʣɺαϙʔτϕΫτϧϚγϯ ʢ47.ʣɺΧʔωϧԽϦοδճؼɺಈܘجఈؔωοτϫʔΫʢ3#'/FUXPSLʣɺFUD ̂ f(x) = ̂ w⊤ϕ(x) = ( N ∑ i=1 ̂ αi ϕ(xi ) ) ⊤ ϕ(x) = N ∑ i=1 ̂ αi k (x, xi) ಛʹάϥϑΧʔωϧ͜͜Ͱॏཁ
ຊʹΔ
͜ͷจͰఏҊ͢Δͷ ‣ άϥϑͷ֊ߏΛ໌ࣔతʹར༻͢Δ৽ͨͳάϥϑΧʔωϧΛఏҊ w ֊ߏΛௐΔͷʹL$PSFͱݺΕΔ֓೦Λ׆༻ w ఏҊ͢Δख๏ʢJFL$PSFϑϨʔϜϫʔΫʣɺطଘͷάϥϑΧʔωϧʹదԠՄೳͰ͋ Γɺ͞ΒʹҰൠͷάϥϑϚονϯάख๏ʹదԠͰ͖Δ w ͭ·Γɺ
ఏҊάϥϑΧʔωϧ طଘάϥϑΧʔωϧ ʷ L$PSFϑϨʔϜϫʔΫ ‣ ఏҊख๏Λ༻͍Δͱɺ47.Λ༻͍ͨάϥϑྨλεΫʹ͓͍ͯɺطଘ ͷάϥϑΧʔωϧΑΓฏۉBDDVSBDZ্͕ͨ͠
άϥϑͷॖୀʢEFHFOFSBDZʣ ‣ ॖୀʢEFHFOFSBDZʣάϥϑʹର͢Δੑ࣭ w ແάϥϑ͕Lॖୀ LEFHFOFSBUF Ͱ͋Δͱɺҙͷ ෦άϥϑ͕ߴʑLͷ࣍ͷΛؚΉͱ͖Λ͍͏ ‣ LDPSF<4FJENBO>
w άϥϑ( 7 & ͷLDPSFͱɺશͯͷͷ͕࣍L Ҏ্Ͱ͋Δ(ͷ࠷େ༠ಋ෦άϥϑCk = (S, E(S)) ∀v ∈ S : degree(v) ≥ k ∀(u, v) ∈ E : u, v ∈ S ⟹ (u, v) ∈ E(S) ˢʮ4 㱪7 ʹΑΔ༠ಋ෦άϥϑ 4 & 4 ʯͷఆٛ ˢҙ༠ಋ෦άϥϑʹ͓͚Δ࣍ ؆୯ʹݴͬͯ͠·͏ͱɺ4ʹؔͳ͍ʢ4ʹͳ͍ϊʔυΛͬͯΔʣΤοδΛআͯ͠ಘΒΕΔ෦άϥϑ
LDPSFͷྫ ͱͷάϥϑͰ࣍ͷϊʔυʢC D V ʜʣ͋Δ͕ɺ ༠ಋ෦άϥϑ͚ͩͰ࣍Λୡ͢Δͷ͕ෆՄೳ DPSFଘࡏ͠ͳ͍
LDPSFղΞϧΰϦζϜ ‣ ࣍ͷখ͍͞ॱʹɺશͯͷϊʔυʹ ͍ͭͯௐ͍ͯ͘ w ࠓߏங͍ͯ͠ΔLDPSFΑΓ͕࣍খ͚͞ ΕͦΕΛLDPSF͔Βআ w ͯ͢ͷ͕࣍LҎ্ʹͳͬͨͷΛ֬ೝ͠ ͨΒLDPSFΛొ
‣ ܭࢉͷΦʔμʔ0 / . w /ϊʔυ w .Τοδ ઢܗ࣌ؒͰܭࢉՄೳͳͷͰɺޙड़ͷఏҊ ख๏Ͱ͜ͷܭࢉ͕ൺֱతϘτϧωοΫ ʹͳΓʹ͍͘
LDPSFͷಛ ‣ LDPSFͷಛɿ෦ू߹ੑ ‣ L͕େ͖͘ͳΔʹͭΕɺΑΓॏཁͳ ใΛؚΜͰ͍Δͱߟ͑ΒΕΔ w ྫ͑ιʔγϟϧωοτϫʔΫͰɺத৺త ਓͰߏ͞ΕΔίϛϡχςΟʔ͕֘ Cδ*(G)
⊆ … ⊆ C1 ⊆ C0 = G LDPSF͕ߏஙͰ͖Δ࠷େͷLάϥϑͷॖୀ άϥϑͷྨࣅLDPSF͝ͱͷྨࣅͰଌΔͷ͕ྑ͍ͷͰʁ
ఏҊख๏
ʲఏҊख๏ʳ$PSF7BSJBOUPG#BTF,FSOFM ‣ ϕʔεͱͳΔάϥϑΧʔωϧΛ༻ҙ͢Δ w ྫʣLϫΠεϑΝΠϥʔɾϦʔϚϯʢ8FJTGFJMFS-FINBOʣΧʔωϧ ‣ ༩͑ΒΕͨͭͷάϥϑʹରͯ͠ɺͦΕͧΕͷશLDPSFΛܭࢉ͢Δ w ྫʣ(ͷLDPSFT\$ $
$ $^ (`ͷLDPSFT\$` $` $`^ ‣ ಉ͡ϨϕϧͷLDPSFΛೖྗͱͨ͠άϥϑΧʔωϧͷग़ྗΛ͠߹ΘͤΔ w ྫʣL@D ( (` L $ $` L $ $` L $ $` L ɾ ɾ ͕άϥϑΧʔωϧ͡Όͳͯ͘ɺάϥϑͷϖΞ Λೖྗͱ͢Δҙͷؔʹར༻Ͱ͖Δ LDPSFϑϨʔϜϫʔΫ
$PNQVUBUJPOBM$PNQMFYJUZ ‣ LDPSFϑϨʔϜϫʔΫͷܭࢉෳࡶ͞ w ɹɹɿάϥϑͷϖΞΛೖྗͱ͢ΔؔʢFHάϥϑΧʔωϧʣͷܭࢉෳࡶ͞ w ɹɹɿೖྗάϥϑͷॖୀʢJFLDPSF͕ଘࡏ͢Δ࠷େͷLʣͷখ͍͞ํ ‣ Ұൠʹɺάϥϑͷॖୀͷ্ք࣍ͷͲͪΒ͔Ͱ༩͑ΒΕΔ w
άϥϑͷ࠷େ࣍ w ྡߦྻͷ࠷େݻ༗ ‣ ɹɹϊʔυΑΓेʹখ͍͞ʢɹɹɹɹʣ͜ͱ͕ଟ͍ͷͰɺLDPSF ϑϨʔϜϫʔΫʹཁ͢ΔՃܭࢉൺֱతͯ͘ࡁΉ c = A × δ* min A δ* min λmax λmax λmax ≪ n
࣮ݧ
࣮ݧͷηοςΟϯά ‣ σʔληοτɿ w όΠΦΠϯϑΥϚςΟΫεͱιʔγϟϧ ωοτϫʔΫ༝དྷͷσʔληοτΛར༻ ‣ ྨɿ w 47.Λར༻ͯ͠ྨλεΫΛղ͘
w ύϥϝʔλGPME$7Ͱܾఆ ‣ ൺֱ͢ΔάϥϑΧʔωϧɿ w ϕʔεάϥϑΧʔωϧछʷఏҊϑϨʔ ϜϫʔΫͷ༗ແछྨ όΠΦΠϯϑΥ ιʔγϟϧωοτ https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
݁ՌʢฏۉBDDVSBDZͱͦͷࢄʣ ଠࣈͷࣈɺUݕఆʢ༗ҙਫ ४ʣʹΑͬͯɺ$03&ϑϨʔ ϜϫʔΫͷੑೳ্͕༗ҙʹ ೝΊΒΕͨέʔεΛද͢ɻ
݁ՌʢฏۉBDDVSBDZͱͦͷࢄʣ ଠࣈͷࣈɺUݕఆʢ༗ҙਫ ४ʣʹΑͬͯɺ$03&ϑϨʔ ϜϫʔΫͷੑೳ্͕༗ҙʹ ೝΊΒΕͨέʔεΛද͢ɻ όΠΦܥͷσʔλΑΓιʔγϟϧ ωοτܥͷσʔλͷํ͕ੑೳ্͕ ΈΒΕͨ ԾઆʮίΞ͕େ͖͍LDPSFͷ ΄͏͕ॏཁʯΛࢧ࣋͢Δ݁Ռ
݁ՌʢฏۉBDDVSBDZͱͦͷࢄʣ ଠࣈͷࣈɺUݕఆʢ༗ҙਫ ४ʣʹΑͬͯɺ$03&ϑϨʔ ϜϫʔΫͷੑೳ্͕༗ҙʹ ೝΊΒΕͨέʔεΛද͢ɻ (3Ͱݦஶʹੑೳ্͕ΈΒΕ ΔҰํ 8-Ͱ͍·͍ͪޮՌͳ͠ 8-֤ϊʔυͷۙΛཁ ͢ΔΑ͏ͳΧʔωϧͳͷ
ͰɺײతʹLDPSFͷ ֓೦ͱ͋·Γ૬ҧແ͠
None
࣮ߦ࣌ؒͷ૿େʹؔ͢Δߟ ‣ ϕʔεΧʔωϧͷ࣮ߦ࣌ؒʹର͢ΔɺLDPSF֦ு ͷ૬ର࣮ߦ࣌ؒΛࣔͨ͠ද ‣ *.%##*/"3:ͱ*.%#.6-5*Ͱඇৗʹ࣮ߦ ͕࣌ؒ͘ͳ͍ͬͯΔ͕ɺੑೳ্Λߟྀ͢Δͱ ܾͯ͠๏֎ͳͷͰͳ͍ʢͱओுʣ
ιʔγϟϧωοτϫʔΫͰੑೳ্͕ݦஶͳཧ༝ ‣ ωοτϫʔΫͷ͕࣍ҟͳΔ ‣ ͖ଇʹै͏ωοτϫʔΫɺΑΓத৺ͷLDPSFʹ༗ӹͳใ͕٧ ·͍ͬͯΔͱߟ͑ΕΔ
୯ҰLDPSFΛͬͨBDDVSBDZ ‣ ೖྗΛɺΦϦδφϧͷάϥϑͰͳ͘ɺ LDPSFͱஔ͖͑ͨ߹ͷBDDVSBDZ w LͷLDPSFάϥϑͦͷͷͳͷͰஔ͖ ͑͠ͳ͍ ‣ ؍ଌɿ w
ʲ$PSF(3ʳ୯ௐతʹখ͍͞LͰੑೳ্ w ʲ(3ʳL ͰɺΦϦδφϧͷάϥϑΛೖྗ ͤͨ͞߹ΑΓੑೳ͕ྑ͘ͳ͍ͬͯΔ ʢײʣඞཁ࠷ݶͷใ͕٧·͍ͬͯΔ࠷খͷ෦ άϥϑ͕͜ͷ͋ͨΓͳͷͰʁ IMDB-BINARYͰͷGRͱCore GR
·ͱΊ
·ͱΊ LDPSFղʹجͮ͘ϑϨʔϜϫʔΫ ‣ LDPSF࠷খ͕࣍LͰ͋Δ࠷େ༠ಋ෦άϥϑ ‣ LDPSF㱬 L DPSFͰ͋Δ͜ͱΛར༻ͯ͠ɺάϥϑͷ֊ߏ͝ͱʹൺֱΛߦ͏ϑϨʔϜϫʔΫΛఏҊ ‣
ຊจͰάϥϑΧʔωϧʹద༻͕ͨ͠ɺҙͷάϥϑϚονϯάΞϧΰϦζϜʹద༻Ͱ͖Δ ͜ͷϑϨʔϜϫʔΫʹΑͬͯɺάϥϑྨλεΫʹ͓͍ͯطଘͷά ϥϑΧʔωϧͷੑೳΛ্ͤͨ͞ ‣ ιʔγϟϧωοτϫʔΫͳͲͷɺεέʔϧϑϦʔωοτϫʔΫͰ༗ޮ ‣ LDPSFʹࣅͨ֓೦ͷطଘάϥϑΧʔωϧʹରͯ͠ޮՌ͍·͍ͪ