Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Node.jsでllama_2_.pdf
Search
Optimisuke
February 21, 2024
Technology
0
210
Node.jsでllama_2_.pdf
kansai.ts #5 2024/02/21 で発表したスライドです。
Optimisuke
February 21, 2024
Tweet
Share
More Decks by Optimisuke
See All by Optimisuke
量子コンピュータ勉強会#1
optimisuke
0
21
LangChainやるならPythonよりTypeScriptの方がいんじゃね?
optimisuke
1
1.1k
オンオフの切り替え
optimisuke
0
58
Other Decks in Technology
See All in Technology
AIに目を奪われすぎて、周りの困っている人間が見えなくなっていませんか?
cap120
1
640
✨敗北解法コレクション✨〜Expertだった頃に足りなかった知識と技術〜
nanachi
1
720
Segment Anything Modelの最新動向:SAM2とその発展系
tenten0727
0
780
金融サービスにおける高速な価値提供とAIの役割 #BetAIDay
layerx
PRO
1
830
開発 × 生成AI × コミュニケーション:GENDAの開発現場で感じたコミュニケーションの変化 / GENDA Tech Talk #1
genda
0
230
【新卒研修資料】数理最適化 / Mathematical Optimization
brainpadpr
27
13k
Amazon S3 Vectorsは大規模ベクトル検索を低コスト化するサーバーレスなベクトルデータベースだ #jawsugsaga / S3 Vectors As A Serverless Vector Database
quiver
1
550
【OptimizationNight】数理最適化のラストワンマイルとしてのUIUX
brainpadpr
2
480
相互運用可能な学修歴クレデンシャルに向けた標準技術と国際動向
fujie
0
250
風が吹けばWHOISが使えなくなる~なぜWHOIS・RDAPはサーバー証明書のメール認証に使えなくなったのか~
orangemorishita
15
5.8k
Cloud WANの基礎から応用~少しだけDeep Dive~
masakiokuda
3
110
Delegate authentication and a lot more to Keycloak with OpenID Connect
ahus1
0
220
Featured
See All Featured
Embracing the Ebb and Flow
colly
86
4.8k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
19k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Statistics for Hackers
jakevdp
799
220k
Producing Creativity
orderedlist
PRO
347
40k
A better future with KSS
kneath
239
17k
Designing for humans not robots
tammielis
253
25k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Transcript
Node.jsでllama 2🦙
はじめに ローカルでもLarge Language Models (LLM) を動かしてみたい MetaのLlama 2は色々できるらしい Pythonでも良いけど、TypeScriptでもやり たい
generated by chatgpt
Llama 2 MetaのLlama 2は、研究用途と商業用途 の両方に対応したオープンソースの大規 模言語モデル いろんなライブラリ・サービスがあってエコ システムがいい感じ rinna、ELYZA、stability.ai による日本語モ
デルも公開されている https://llama.meta.com/ generated by chatgpt
llama.cpp LlamaをC/C++で実装したもの。Apple silicon のGPUにも対応している。 https://github.com/ggerganov/llama.cpp?tab=readme-ov-file
node-llama-cpp Node.jsでllama.cppを動かすためのライブラリ Node-APIを使ってllama.cppを呼び出している Node-APIはネイティブアドオンの作成を可能にす るNode.jsのAPI。ネイティブアドオンとは、CやC++ などのコンパイル言語で書かれ、Node.jsの JavaScriptランタイムと統合されるモジュールのこ と。 https://github.com/withcatai/node-llama-cpp https://nodejs.org/api/n-api.html
🦜🔗 LangChain.js LangChainは、大規模言語モデルを活用し たアプリケーションの構築を支援するフレー ムワーク LangChain.jsはJavaScript/TypeScript版 (Python版がメイン) kansai.ts #4で話した https://www.langchain.com/
https://github.com/langchain-ai/langchainjs https://speakerdeck.com/optimisuke/langchainyarunarapythonyoritypescriptnofang-gainziyane
試してみた generated by chatgpt
node-llama-cpp 試してみた import { fileURLToPath } from "url"; import path
from "path"; import { LlamaModel, LlamaContext, LlamaChatSession } from "node-llama-cpp"; const __dirname = path.dirname(fileURLToPath(import.meta.url)); const model = new LlamaModel({modelPath: path.join(__dirname, "models", "ELYZA-japanese-Llama-2-7b-fast-instruct-q4_K_M.gguf")}); const context = new LlamaContext({ model }); const session = new LlamaChatSession({ context }); const q1 = "元気?"; console.log("User: " + q1); const a1 = await session.prompt(q1); console.log("AI: " + a1);
LangChain.js 試してみた import { LlamaCpp } from "@langchain/community/llms/llama_cpp"; const llamaPath
= "/Users/hoge/hello-node-llama-cpp/models/ELYZA-japanese-Llama-2-7b-fast-instru ct-q4_K_M.gguf"; const model = new LlamaCpp({ modelPath: llamaPath }); const question = "ラマって何?"; console.log(`User: ${question}`); const response = await model.invoke(question); console.log(`AI : ${response}`);
LangChain.js 試してみた import { ChatLlamaCpp } from "@langchain/community/chat_models/llama_cpp"; const llamaPath
= "/Users/hoge/hello-node-llama-cpp/models/ELYZA-japanese-Llama-2-7b-fast-instru ct-q4_K_M.gguf"; const model = new ChatLlamaCpp({ modelPath: llamaPath, temperature: 0.7 }); const stream = await model.stream("ラマって何?"); for await (const chunk of stream) { console.log(chunk.content); }
コードを見てみた generated by chatgpt
node-llama-cppのコードを見てみた class LLAMAModel : public Napi::ObjectWrap<LLAMAModel> { public: llama_model_params model_params;
llama_model* model; LLAMAModel(const Napi::CallbackInfo& info) : Napi::ObjectWrap<LLAMAModel>(info) { model_params = llama_model_default_params(); // Get the model path std::string modelPath = info[0].As<Napi::String>().Utf8Value(); llama_backend_init(false); model = llama_load_model_from_file(modelPath.c_str(), model_params); } };
node-llama-cppのコードを見てみた execute_process(COMMAND node -p "require('node-addon-api').include.slice(1,-1)" WORKING_DIRECTORY ${CMAKE_SOURCE_DIR} OUTPUT_VARIABLE NODE_ADDON_API_DIR OUTPUT_STRIP_TRAILING_WHITESPACE)
include_directories(${NODE_ADDON_API_DIR} ${CMAKE_JS_INC}) include_directories("llama.cpp") file(GLOB SOURCE_FILES "addon.cpp") target_link_libraries(${PROJECT_NAME} "llama") execute_process(COMMAND ${CMAKE_AR} /def:${CMAKE_JS_NODELIB_DEF} /out:${CMAKE_JS_NODELIB_TARGET} ${CMAKE_STATIC_LINKER_FLAGS})
node-llama-cppのコードを見てみた import {createRequire} from "module"; const require = createRequire(import.meta.url); export
async function loadBin(): Promise<LlamaCppNodeModule> { const usedBinFlag = await getUsedBinFlag(); if (usedBinFlag === "prebuiltBinaries") { const prebuildBinPath = await getPrebuildBinPath(); return require(prebuildBinPath); } }
LangChain.jsのコードを見てみた import { LlamaModel, LlamaContext, LlamaChatSession } from "node-llama-cpp"; import
{ LlamaBaseCppInputs, createLlamaModel, createLlamaContext, createLlamaSession} from "../utils/llama_cpp.js"; export class LlamaCpp extends LLM<LlamaCppCallOptions> { _model: LlamaModel; _context: LlamaContext; _session: LlamaChatSession; constructor(inputs: LlamaCppInputs) { this._model = createLlamaModel(inputs); this._context = createLlamaContext(this._model, inputs); this._session = createLlamaSession(this._context); } async _call(prompt: string): Promise<string> { const promptOptions = {}; const completion = await this._session.prompt(prompt, promptOptions); return completion; } } https://github.com/langchain-ai/langchainjs/blob/main/libs/langchain-community/src/llms/llama_cpp.ts
llama.cppのコードを見てみた ifdef LLAMA_METAL MK_CPPFLAGS += -DGGML_USE_METAL MK_LDFLAGS += -framework Foundation
-framework Metal -framework MetalKit OBJS += ggml-metal.o ifdef LLAMA_METAL_NDEBUG MK_CPPFLAGS += -DGGML_METAL_NDEBUG endif endif # LLAMA_METAL ifdef LLAMA_METAL ggml-metal.o: ggml-metal.m ggml-metal.h $(CC) $(CFLAGS) -c $< -o $@ endif # LLAMA_METAL https://github.com/ggerganov/llama.cpp/blob/master/Makefile
参考:Ollama🦙 https://ollama.ai/
おわりに Llama 2すごい llama.cppすごい Node-APIすごい LLMはPythonじゃなくてもいんじゃね? generated by chatgpt