Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
databricksを使ってnotebookベースでお手軽に機械学習API・バッチ処理を量産する
Search
Toru Nishiyama
May 29, 2019
Technology
2
1.1k
databricksを使ってnotebookベースでお手軽に機械学習API・バッチ処理を量産する
2019年5月29日のMachine Learning Casual Talks #10 で発表する内容
Toru Nishiyama
May 29, 2019
Tweet
Share
More Decks by Toru Nishiyama
See All by Toru Nishiyama
scramble#4_最近のFOLIOのToC事業におけるプロダクトマネジメント※公開版
paulxl
0
1.9k
データ活用の進め方をステークホルダーに理解してもらうためにやったこと
paulxl
1
1.2k
エンジニアとデータサイエンティストがもっと仲良くなるためのデータサイエンティストの話
paulxl
0
210
Other Decks in Technology
See All in Technology
サイボウズフロントエンドエキスパートチームについて / FrontendExpert Team
cybozuinsideout
PRO
5
38k
Fanstaの1年を大解剖! 一人SREはどこまでできるのか!?
syossan27
2
180
生成AIのガバナンスの全体像と現実解
fnifni
1
210
LINEヤフーのフロントエンド組織・体制の紹介【24年12月】
lycorp_recruit_jp
0
550
多様なメトリックとシステムの健全性維持
masaaki_k
0
110
Microsoft Azure全冠になってみた ~アレを使い倒した者が試験を制す!?~/Obtained all Microsoft Azure certifications Those who use "that" to the full will win the exam! ?
yuj1osm
2
120
TSKaigi 2024 の登壇から広がったコミュニティ活動について
tsukuha
0
160
GitHub Copilot のテクニック集/GitHub Copilot Techniques
rayuron
39
16k
DUSt3R, MASt3R, MASt3R-SfM にみる3D基盤モデル
spatial_ai_network
2
240
組み込みアプリパフォーマンス格闘記 検索画面編
wataruhigasi
1
110
Oracle Cloudの生成AIサービスって実際どこまで使えるの? エンジニア目線で試してみた
minorun365
PRO
4
300
APIとはなにか
mikanichinose
0
110
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
Building Applications with DynamoDB
mza
91
6.1k
Designing Experiences People Love
moore
138
23k
For a Future-Friendly Web
brad_frost
175
9.4k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
127
18k
4 Signs Your Business is Dying
shpigford
182
21k
Embracing the Ebb and Flow
colly
84
4.5k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
810
Reflections from 52 weeks, 52 projects
jeffersonlam
347
20k
Transcript
databricksを使ってnotebookベース でお手軽に機械学習API・ バッチ処理を量産する 2019.05.29 Supership Toru Nishiyama
2 サマリ • 自己紹介 • 普段の仕事と機械学習のかかわり • databricksとは • databricksのJob機能を活用しよう
• databricks環境におけるCI/CD • 具体的なユースケース
3 自己紹介 • 西山 徹(にしやま とおる) • データアナリスト/セールスエンジニア@Supership • 非IT系
-> データアナリスト -> データアナリスト/セールスエンジニア(now) • どうでもよいつぶやき: 最近、二郎系ラーメンマップを作ったらGIGAZINEに 取り上げられたりしました ※Herokuの無料枠が死んで現在は落ちてます…
4 普段の仕事と機械学習のかかわり • 所属チームのミッション • 広告配信ログ、ユーザの属性情報など自社データを用いた クライアント向けデータ分析・自社利用向け広告配信セグメントの作成 etc., • 大変なところ
• とにかくデータがでかい • 広告配信ログは1日数十億レコード、 属性データも1テーブル1億レコードを余裕で超えてくる • チームはアナリストが大半で、エンジニアリングリソースが十分でない • 案件ベースで、 広告配信セグメントを新規で作成してスケジュール実行したり、 クライアントとのデータ連携のためのデータパイプラインを作ったり、 といったことが散発的に発生
5 普段の仕事と機械学習のかかわり • 大変なところにどう立ち向かっているか • とにかくデータがでかい -> Apache Sparkを使おう •
チームはアナリストが大半で、エンジニアリングリソースが十分でない -> databricksを使うことで、極力エンジニアリング にかけるリソースをへらす ≒databricksの機能を利用して巻き取ってもらう ↑ここらへんが今回の話の中心になります
6 databricksとは • ざっくりdatabricksの紹介 • databricks社(Sparkの開発元)が提供している 統合分析プラットフォーム • jupyter-likeなnotebookベースでPython, R,
Scalaから、 分散処理基盤上でSparkが実行できる • 利用するクラスタ単位で環境を切り替えたり、 依存ライブラリを管理することができる • ベースとなる環境は databricks runtimeと呼ばれる標準環境 -> ざっくりanacondaみたいなものだと思ってください • 今日出てこない話も含めて過去に書いた記事もあるので よかったら読んでみてください • Databricksで分析業務がはかどっている話 - Qiita
7 databricksのJobs機能を活用しよう • notebookを文字通りjob化することができる機能 • notebookのスケジュール実行したり、REST API化して 任意のタイミングで処理を実行させることができる • jobの作成・管理などの操作がwebブラウザ上から実行できる
• 良いかどうかはさておき, エンジニアリングの基礎知識がなくても一瞬でAPI構築ができる • jobごとに専用のクラスタが実行時に都度立ち上がるので、 コスト的にもメリットがある • jobの内容に合わせたスペックを選択できる (CPU/GPU, メモリ, worker数, etc.,)
8 databricks環境におけるCI/CD • databricksのnotebookはgithubとの連携が可能 • しかも.pyで保存できる • databricksが用意しているCLIを使うことで、ローカル環境や databricksのワークスペース内の任意のディレクトリに notebookを同期可能
• それとCI/CDツールを組み合わせることで、 「notebookがmasterにマージされたら本番用の ワークスペースに自動でデプロイする」といったことが実現可能 (開発用ワークスペース ) (本番用ワークスペース ) deploy commit/ merge /master/ /dev/
9 webアプリケーション 具体的なユースケース • バッチ処理を記述したnotebookをスケジュール実行して、 ETL処理として利用 • アドホックなETL処理が多数発生するので都合が良い • webアプリケーションから呼ばれるAPIとして利用
databricks job jobに投げる パラメータを選択 jobの結果を閲覧 jobの結果を 出力 ユーザが指定した 条件でjobをkick/ jobのステータスを監視 完了した jobの結果を読み込み 画面上で可視化
10 さらに細かいtips • ちょっとした履歴管理はnotebookに標準でついてるので楽 • .pyでnotebookが保存されるのでGithub上でのレビューが めっちゃ楽 • 改行がちゃんと表示されてdiffがめっちゃ見やすい! •
databricks CLIでローカル環境にnotebookを持ってきて、 .pyファイルとして開発もできる • jupyter-likeなインタラクティブに確認しながら開発したい、 リファクタなどエディタやlintツールの機能を活用したいなど、 好みに合わせて作業環境を選べる • 微妙なところとしては、jobにキューイングが まだ実装されていないところ
11 まとめ • databricksを使うことで、 • Jupyter notebookベースで分析をしていて辛いところを databricksがよしなに巻き取ってくれるので、 アナリストが多いチームでもお手軽に機械学習や ちょっとしたデータパイプラインを量産できる
• (今回は触れませんでしたが)ちょっとしたBIツールとして 使ったりもできるなど、databricksだけで分析業務が完結できるよう 様々な機能が高速に開発されている