Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ハイパーパラメータ最適化フレームワーク Optunaの最新機能紹介 - 2023/10/28 ...
Search
Preferred Networks
PRO
October 27, 2023
Technology
2
1.3k
ハイパーパラメータ最適化フレームワーク Optunaの最新機能紹介 - 2023/10/28 PyCon APAC 2023
Optunaの最新リリースv3.4で導入された新機能について紹介いたします。
イベントサイト:
https://2023-apac.pycon.jp/
Preferred Networks
PRO
October 27, 2023
Tweet
Share
More Decks by Preferred Networks
See All by Preferred Networks
Optuna: a Black-Box Optimization Framework
pfn
PRO
1
100
自社開発した大規模言語モデルをどうプロダクションに乗せて運用していくか〜インフラ編〜
pfn
PRO
22
6.5k
Extension API Server による Kubernetes API の拡張 / Kubernetes Meetup Tokyo #66
pfn
PRO
2
230
機械学習クラスタ コンテナネットワーキング BoF
pfn
PRO
1
280
Preferred Networks会社概要
pfn
PRO
3
20k
生成AI向け機械学習クラスタ 構築のレシピ 北海道石狩編
pfn
PRO
5
1.8k
三次元再構成(東京大学大学院 情報理工学系研究科『知能情報論』)
pfn
PRO
10
3.1k
Developing image pull secrets provisioner / Kubernetes Meetup Tokyo #65
pfn
PRO
3
470
マルチテナントマルチクラスタKubernetesでもUXを損なわない認証認可の勘所
pfn
PRO
2
500
Other Decks in Technology
See All in Technology
Oracle Autonomous Database:サービス概要のご紹介
oracle4engineer
PRO
1
6.9k
React Aria で実現する次世代のアクセシビリティ
ryo_manba
4
1k
App Router を実プロダクトで採用して見えてきた勘所をちょっとだけ紹介
marokanatani
0
720
エンジニア向け会社紹介資料
caddi_eng
15
250k
SORACOMで実現するIoTのマルチクラウド対応 - IoTでのクリーンアーキテクチャの実現 -
kenichirokimura
0
330
技術ブログや登壇資料を秒で作るコツ伝授します
minorun365
PRO
23
5.3k
Autonomous Database Cloud 技術詳細 / adb-s_technical_detail_jp
oracle4engineer
PRO
15
40k
脆弱星に導かれて
nishimunea
1
1.6k
RAGHack: Building RAG apps in Python
pamelafox
0
150
ロボットアームを遠隔制御の話 & LLMをつかったIoTの話もしたい
soracom
PRO
1
250
AI でアップデートする既存テクノロジーと、クラウドエンジニアの生きる道
soracom
PRO
1
370
Analytics-Backed App Widget Development - Served with Jetpack Glance
miyabigouji
0
150
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
167
14k
Faster Mobile Websites
deanohume
304
30k
For a Future-Friendly Web
brad_frost
174
9.3k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
24
3.9k
Designing the Hi-DPI Web
ddemaree
278
34k
Learning to Love Humans: Emotional Interface Design
aarron
270
40k
How To Stay Up To Date on Web Technology
chriscoyier
786
250k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
38
9.1k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
363
22k
The Invisible Customer
myddelton
119
13k
We Have a Design System, Now What?
morganepeng
48
7.1k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
43
2k
Transcript
ハイパーパラメータ最適化フレームワーク Optunaの最新機能紹介 Masashi Shibata PyCon APAC 2023 in Tokyo, Japan
2023.10.27-2023.10.28
MASASHI SHIBATA Preferred Networks, Inc. Release Manager of Optuna 3.3
and 3.4 Creator of Optuna Dashboard GitHub @c-bata / X @c_bata_
3 Optuna 3.4がリリースされました! https://x.com/OptunaAutoML/status/1714181590354739605
4 本発表の内容 1 Optuna / Optuna Dashboardの概要と基本的な使い方 2 Optuna Artifactを使った実験管理
3 Preferential Optimizationと生成AIへの活用 4 Jupyter Lab拡張とVS Code拡張
5 Optunaの概要と基本的な使い方
6 Optunaとは? ハイパラ最適化を表す絵 機械学習のハイパー パラメータ最適化 自律移動ロボット 3D CAD (Tunny) ※1
$ pip install optuna ハイパーパラメータ最適化フレームワーク ※1 詳細は下記Optuna公式ブログ記事を参照 https://medium.com/optuna/black-box-optimization-of-geometry-and-functionality-by-integrating-optuna-and-3d-cad-f2d2984d263e
7 Optunaの基本的な使い方 1 目的関数を定義 2 サジェストAPI経由でハイパー パラメータをサンプル 3 最適化の状態を管理する Studyオブジェクトを作成
4 試行回数を指定して最適化開始 5 結果の表示 import optuna def objective(trial: optuna.Trial) -> float: x1 = trial.suggest_float("x1", -10, 10) x2 = trial.suggest_float("x2", -10, 10) return (x1 - 2)**2 + (x2 + 5)**2 study = optuna.create_study( storage="sqlite:///db.sqlite3", study_name="optimize-quadratic-function" ) study.optimize(objective, n_trials=100) print(f"Best value: {study.best_value}") print(f"Best params: {study.best_params}")
8 Optunaの基本的な使い方 1 目的関数を定義 2 サジェストAPI経由でハイパー パラメータをサンプル 3 最適化の状態を管理する Studyオブジェクトを作成
4 試行回数を指定して最適化開始 5 結果の表示 import optuna def objective(trial: optuna.Trial) -> float: x1 = trial.suggest_float("x1", -10, 10) x2 = trial.suggest_float("x2", -10, 10) return (x1 - 2)**2 + (x2 + 5)**2 study = optuna.create_study( storage="sqlite:///db.sqlite3" study_name="optimize-quadratic-function" ) study.optimize(objective, n_trials=100) print(f"Best value: {study.best_value}") print(f"Best params: {study.best_params}") Trialオブジェクトを受け取り 評価値(float)を返す関数を定義
9 Optunaの基本的な使い方 1 目的関数を定義 2 サジェストAPI経由でハイパー パラメータをサンプル 3 最適化の状態を管理する Studyオブジェクトを作成
4 試行回数を指定して最適化開始 5 結果の表示 import optuna def objective(trial: optuna.Trial) -> float: x1 = trial.suggest_float("x1", -10, 10) x2 = trial.suggest_float("x2", -10, 10) return (x1 - 2)**2 + (x2 + 5)**2 study = optuna.create_study( storage="sqlite:///db.sqlite3" study_name="optimize-quadratic-function" ) study.optimize(objective, n_trials=100) print(f"Best value: {study.best_value}") print(f"Best params: {study.best_params}") ※この最小化問題の解は (x1, x2) = (2, -5)
10 Optunaの基本的な使い方 1 目的関数を定義 2 サジェストAPI経由でハイパー パラメータをサンプル 3 最適化の状態を管理する Studyオブジェクトを作成
4 試行回数を指定して最適化開始 5 結果の表示 import optuna def objective(trial: optuna.Trial) -> float: x1 = trial.suggest_float("x1", -10, 10) x2 = trial.suggest_float("x2", -10, 10) return (x1 - 2)**2 + (x2 + 5)**2 study = optuna.create_study( storage="sqlite:///db.sqlite3" study_name="optimize-quadratic-function" ) study.optimize(objective, n_trials=100) print(f"Best value: {study.best_value}") print(f"Best params: {study.best_params}") x1 および x2 の探索空間を定義 今回はどちらも区間 [-10, 10] の中で探索
11 Optunaの基本的な使い方 1 目的関数を定義 2 サジェストAPI経由でハイパー パラメータをサンプル 3 最適化の状態を管理する Studyオブジェクトを作成
4 試行回数を指定して最適化開始 5 結果の表示 import optuna def objective(trial: optuna.Trial) -> float: x1 = trial.suggest_float("x1", -10, 10) x2 = trial.suggest_float("x2", -10, 10) return (x1 - 2)**2 + (x2 + 5)**2 study = optuna.create_study( storage="sqlite:///db.sqlite3", study_name="optimize-quadratic-function" ) study.optimize(objective, n_trials=100) print(f"Best value: {study.best_value}") print(f"Best params: {study.best_params}") 最適化履歴をデータベースに保存
12 Optunaの基本的な使い方 1 目的関数を定義 2 サジェストAPI経由でハイパー パラメータをサンプル 3 最適化の状態を管理する Studyオブジェクトを作成
4 試行回数を指定して最適化開始 5 結果の表示 import optuna def objective(trial: optuna.Trial) -> float: x1 = trial.suggest_float("x1", -10, 10) x2 = trial.suggest_float("x2", -10, 10) return (x1 - 2)**2 + (x2 + 5)**2 study = optuna.create_study( storage="sqlite:///db.sqlite3" study_name="optimize-quadratic-function" ) study.optimize(objective, n_trials=100) print(f"Best value: {study.best_value}") print(f"Best params: {study.best_params}") 目的関数を100回呼び出し
13 Optunaの基本的な使い方 1 目的関数を定義 2 サジェストAPI経由でハイパー パラメータをサンプル 3 最適化の状態を管理する Studyオブジェクトを作成
4 試行回数を指定して最適化開始 5 結果の表示 import optuna def objective(trial: optuna.Trial) -> float: x1 = trial.suggest_float("x1", -10, 10) x2 = trial.suggest_float("x2", -10, 10) return (x1 - 2)**2 + (x2 + 5)**2 study = optuna.create_study( storage="sqlite:///db.sqlite3" study_name="optimize-quadratic-function" ) study.optimize(objective, n_trials=100) print(f"Best value: {study.best_value}") print(f"Best params: {study.best_params}")
14 Optunaの基本的な使い方 1 目的関数を定義 2 サジェストAPI経由でハイパー パラメーターをサンプル 3 最適化の状態を管理する Studyオブジェクトを作成
4 試行回数を指定して最適化開始 5 結果の表示 import optuna def objective(trial: optuna.Trial) -> float: # ハイパーパラメーターのサンプル x1 = trial.suggest_float("x1", -10, 10) x2 = trial.suggest_float("x2", -10, 10) # 評価値を計算してリターン return (x1 - 1)**2 + (x2 + 5)**2 study = optuna.create_study() study.optimize(objective, n_trials=100) print(f"Best value: {study.best_value}") print(f"Best params: {study.best_params}") $ python example.py Trial 0 finished with value: 83.8192 and parameters: {'x1': -8.1549, 'x2': -5.0722} Trial 1 finished with value: 9.3275 and parameters: {'x1': -1.7273, 'x2': -3.6254} Trial 2 finished with value: 79.0848 and parameters: {'x1': 9.8671, 'x2': -4.3235} Trial 3 finished with value: 56.8358 and parameters: {'x1': -4.2930, 'x2': 0.3683} Trial 4 finished with value: 198.6490 and parameters: {'x1': -4.0875, 'x2': 8.1440} ... Best value: 0.02332568173253747 Best params: {'x1': 2.0699302180632904, 'x2': -4.864222806281179} 実行結果
15 Optunaの基本的な使い方 1 目的関数を定義 2 サジェストAPI経由でハイパー パラメーターをサンプル 3 最適化の状態を管理する Studyオブジェクトを作成
4 試行回数を指定して最適化開始 5 結果の表示 import optuna def objective(trial: optuna.Trial) -> float: # ハイパーパラメーターのサンプル x1 = trial.suggest_float("x1", -10, 10) x2 = trial.suggest_float("x2", -10, 10) # 評価値を計算してリターン return (x1 - 1)**2 + (x2 + 5)**2 study = optuna.create_study() study.optimize(objective, n_trials=100) print(f"Best value: {study.best_value}") print(f"Best params: {study.best_params}") Optuna Dashboardによる履歴の確認 $ pip install optuna-dashboard $ optuna-dashboard sqlite:///db.sqlite3
16 より詳細な使い方は書籍をチェック! 初学者にとって最適な一冊です • 丁寧なチュートリアル • 様々な便利機能の紹介 • 様々な応用事例の紹介 •
アルゴリズムの詳細 好評発売中です!
17 最新機能紹介 ① Optuna Artifact を使った 実験管理
18 Artifactによるファイル管理 学習済みモデルや画像など大きな データもOptunaで管理が可能に! Optuna Artifactを使った実験管理 import optuna from optuna.artifacts
import FileSystemArtifactStore from optuna.artifacts import upload_artifact # この例では ./artifacts ディレクトリ以下に生成物を保存 artifact_store = FileSystemArtifactStore("./artifacts") def objective(trial: optuna.Trial) -> float: param = trial.suggest_float(...) file_path = generate_image(param, ...) # 生成物のアップロード (e.g. 学習済みモデル等) upload_artifact(trial, file_path, artifact_store) return ... 画像をArtifact Storeにアップロード ※ AWS S3やGoogle Cloud Storageにも対応
19 Optuna Dashboardでの確認 $ optuna-dashboard sqlite:///db.sqlite3 \ --artifact-dir ./artifacts コマンドラインでの起動方法
Python APIでの起動方法 AWS S3等にアップロードしたファイル を閲覧するにはPython APIを使用 from optuna.storages import RDBStorage from optuna.artifacts import Boto3ArtifactStore from optuna_dashboard import run_server storage = RDBStorage("sqlite:///db.sqlite3") artifact_store = Boto3ArtifactStore("my-bucket") run_server(storage, artifact_store=artifact_store)
20 Optuna Dashboardでの確認 $ optuna-dashboard sqlite:///db.sqlite3 \ --artifact-dir ./artifacts Optuna
Dashboardの起動方法 コマンドラインオプションの使用 Python APIでの起動方法 AWS S3等にアップロードしたファイル を閲覧するにはPython APIを使用 from optuna.storages import RDBStorage from optuna.artifacts import Boto3ArtifactStore from optuna_dashboard import run_server storage = RDBStorage("sqlite:///db.sqlite3") artifact_store = Boto3ArtifactStore("my-bucket") run_server(storage, artifact_store=artifact_store) 様々なファイル形式に対応! 3Dモデル 分子構造 音声
21 最新機能紹介 ② Preferential Optimization と生成AIへの活用
22 音声合成 生成AIにおけるハイパーパラメータ最適化 定量的に評価値を計算できず、人間による確認(主観評価)が重要 画像生成 自然言語生成 Optuna Dashboard はPythonのハイパー パラメーター最適化フ
レームワークです。。。
23 Preferential Optimization チュートリアル
24 お題:かわいいOptunaくんの生成 (Stable Diffusion) Hey! Please make me cuter 🙏
Optunaくん Sure. Let’s try using Stable Diffusion! Me
25 お題:かわいいOptunaくんの生成 (Stable Diffusion) 入力画像 Stable Diffusion プロンプト a mascot
character with two eyes and a mouth, smiling, charming, painting huggingface.co/stabilityai/ stable-diffusion-2-1 ? ナンカチガウ... 出力画像
26 お題:かわいいOptunaくんの生成 (Stable Diffusion) Hmm… 😫 Let me optimize a
prompt with Optuna. Optunaくん But wait… How am I supposed to score how cute I am? 🤔 It’s time to use Preferential Optimization! Me
27 Preferential Optimization による相対評価 2つのプログラムが協調的に動作しながら最適化を進める
28 Optuna Dashboardの操作画面 I prefer A over B! I prefer
B over A!
29 新 Optunaくん チュートリアルのお題:画像生成(img2img) 旧 Optunaくん Cool! The left one
is exactly I wanted 🥰 Me These images generated!
30 Preferential Optimizationのコード解説 generator.py ソースコードURL👇 https://gist.github.com/c-bata/449f2e90ac50a1285b7fe210ab51eae6 これから解説するコード Database & File
Storage Optuna Storage sqlite:///db.sqlite3 Artifact Store FileSystemBackend Optuna Dashboard 1. Studyの作成 2. 画面に表示するArtifactの指定 3. 新しいTrialの生成 4. パラメーターのサンプル 5. Stable Diffusionモデル実行 6. 画像アップロード 7. 以降、Step 3-6を繰り返す Optuna Dashboardの起動 $ optuna-dashboard …
31 公式チュートリアルもチェック! https://optuna-dashboard.readthedocs.io/en/latest /tutorials/preferential-optimization.html 夕焼け色(オレンジ色)のRGBカラーコードをOptunaで探索するチュートリアル
32 最新機能紹介 ③ Jupyter Lab拡張 VS Code拡張
33 $ pip install jupyterlab jupyterlab-optuna
34 Visual Studio Marketplace からインストール!
35 まとめ
36 本発表で話したこと • Optunaの基本的な使い方 • Artifact機能を使った実験管理 • Preferential Optimizationと生成AIへの活用 •
VS Code拡張やJupyter Lab拡張の紹介 最後におねがい • Optunaをみなさまのプロジェクトでご活用ください!気に入った方はGithub Starsもぜひおねがいします。 • Preferential OptimizationやArtifactなど最新機能の活用事例を ぜひブログやSNSでシェアしてください! おわりに
Making the real world computable