Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Compare Benchmarks and Compiler Optimization I...
Search
po3rin
May 27, 2019
Programming
4
860
Compare Benchmarks and Compiler Optimization In Go
Go(Un) Conference #6
po3rin
May 27, 2019
Tweet
Share
More Decks by po3rin
See All by po3rin
LLMで複雑な検索条件アセットから脱却する!! 生成的検索インタフェースの設計論
po3rin
4
960
C-Shared Buildで突破するAI Agent バックテストの壁
po3rin
0
410
嗚呼、当時の本番環境の状態で AI Agentを再評価したいなぁ...
po3rin
0
490
Temporal Knowledge Graphで作る! 時間変化するナレッジを扱うAI Agentの世界
po3rin
5
1.7k
自作LLM Native GORM Pluginで実現する AI Agentバックテスト基盤構築
po3rin
2
760
麻雀点数計算問題生成タスクから学ぶ Single Agentの限界と Agentic Workflowの底力
po3rin
5
2.8k
LLMOpsのパフォーマンスを支える技術と現場で実践した改善
po3rin
8
1.1k
LLMは麻雀を知らなすぎるから俺が教育してやる
po3rin
4
2.6k
M3におけるCI/CDパイプラインを新鮮に保つ仕組み
po3rin
0
400
Other Decks in Programming
See All in Programming
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
3
1.1k
AI時代を生き抜く 新卒エンジニアの生きる道
coconala_engineer
1
410
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
250
tparseでgo testの出力を見やすくする
utgwkk
2
270
Pythonではじめるオープンデータ分析〜書籍の紹介と書籍で紹介しきれなかった事例の紹介〜
welliving
2
550
リリース時」テストから「デイリー実行」へ!開発マネージャが取り組んだ、レガシー自動テストのモダン化戦略
goataka
0
140
Claude Codeの「Compacting Conversation」を体感50%減! CLAUDE.md + 8 Skills で挑むコンテキスト管理術
kmurahama
1
630
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
290
AIエージェントを活かすPM術 AI駆動開発の現場から
gyuta
0
470
AI Agent Dojo #4: watsonx Orchestrate ADK体験
oniak3ibm
PRO
0
110
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
190
Socio-Technical Evolution: Growing an Architecture and Its Organization for Fast Flow
cer
PRO
0
390
Featured
See All Featured
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
300
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
43
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
400
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
120
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
Bash Introduction
62gerente
615
210k
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
120
Prompt Engineering for Job Search
mfonobong
0
120
Evolving SEO for Evolving Search Engines
ryanjones
0
73
ラッコキーワード サービス紹介資料
rakko
0
1.8M
Transcript
Compare Benchmarks and Compiler Optimization In Go Go Un Conference
May 27, 2019 @ po3rin
@po3rin Software Enginner @ Shiroyagi Corporation QBHF Golang / Python
/ Rust / Docker / AWS / Elasticsearch
QBHF Introduction \
QBHF 044ʹίϛοτΛࢼΈΔࡍʹɺʮͳͥ ͜ͷ࣮͕ྑ͍͔ʯΛূ໌͢Δҝʹ (Pʹ͓͚ΔϕϯνϚʔΫʹ͍ͭͯௐ ͨͷͰͦΕΛൃද͠·͢ɻ Benchmark of Go Ὂ
QBHF ɾϕϯνϚʔΫΛʮূ໌ʯʹ͑ΔΑ͏ʹͳΔ ɾϕϯνϚʔΫٻ͔ΒίϯύΠϥ࠷దԽΛআ͘ Ὂ the porpose of this talk
QBHF Review how to take a benchmark \
QBHF Review how to take a benchmark Ὂ ֤ϕϯνϚʔΫؔC/ճ෮ ͞Ε·͢ɻσϑΥϧτͰC/
͔Β࢝·Γ·͕͢ɺϕϯνϚʔ Ϋػೳ͕ඵҎʹྃͨ͠߹ C/͕૿Ճͯ͠ϕϯνϚʔΫ͕࠶ ࣮ߦ͞Ε·͢ɻ
QBHF Review how to take a benchmark Ὂ ݁ՌΛݟΔͱͱ͍͏TV⒏Y͕͍͍ͭͯ·͢ɻ͜Ε͜ͷςετΛ࣮ߦ͢ΔͨΊ ʹ༻͞Εͨ(0."9130$4ͷͰ͢ɻ͜ͷσϑΥϧτͰىಈ࣌ʹ(Pϓϩ
ηεʹݟ͑Δ$16ͷʹͳΓ·͢ɻ
QBHF -cpu Ὂ (0."9130$4DQVϑϥάͰมߋͰ͖·͢ɻνʔϜؒͰϕϯνϚʔΫΛ͍ճ ࣌͢$16ͷ͕ϕϯνϚʔΫʹӨڹΛ༩͑ͳ͍Α͏ʹҙ͕ඞཁͰ͢ɻ
QBHF -benchtime Ὂ ෮ճΛ૿͢ҝʹ CFODIUJNFϑϥάΛ༻ ͯ͠ϕϯνϚʔΫ࣌ؒΛ ૿͢͜ͱ͕Ͱ͖·͢ɻ (P͔ΒCFODIUJNF ϑϥά෮ճΛࢦఆ Ͱ͖·͢ɻ
QBHF Benchmark cost avoidance Ὂ C3FTFU5JNFS ͰηοτΞοϓͰ ൃੜ͢ΔίετΛճආͰ͖·͢ɻ ϧʔϓͷ෮͝ͱʹίετ͕ߴ͍ ηοτΞοϓ͕͋Δ߹ɺ
C4UPQ5JNFS ͓Αͼ C4UBSU5JNFS Λ༻͠·͢ɻ
QBHF Check allocations Ὂ ΞϩέʔγϣϯͷͱαΠζɺϕϯνϚʔΫͱڧ͘૬͍ؔͯ͠·͢ɻΞϩέʔ γϣϯͷΛϕϯνϚʔΫͰ֬ೝ͢Δ࣌CFODINFNΛ͍·͢ɻ
QBHF Benchmark stability \
QBHF Benchmark stability Ὂ ඦສ·ͨेԯճ΄Ͳ෮࣮ߦ͞ ΕΔϕϯνϚʔΫ͕OTdNTͷൣғ ͷͳΔ߹ɺϕϯνϚʔΫε έʔϦϯάɺϝϞϦہॴੑͳͲ༷ʑͳ ཁҼʹΑΓෆ҆ఆʹͳ͍ͬͯ·͢ɻ
QBHF Benchmark stability Ὂ ͜ͷΑ͏ͳ߹DPVOUϑ ϥάΛ༻ͯ͠ɺϕϯν ϚʔΫΛෳճ࣮ߦ͢Δ͜ ͱͰϕϯνϚʔΫͷࢄ ؚΊͯ֬ೝ͢Δͷ͕ಘࡦͰ ͢ɻ
QBHF Benchmark stability Ὂ ҰํͰϕϯνϚʔΫͷ҆ఆΛݟΔͷʹศརͳπʔϧ͕͋Γ· ͢ɻ3VTT$PYʹΑΔCFODITUBUͱ͍͏πʔϧΛհ͠·͢ɻ
QBHF Benchmark stability Ὂ CFODITUBUҰ࿈ͷϕϯνϚʔΫ ςετΛ࣮ߦͯ͠ɺͦΕΒ͕ͲΕ ΄Ͳ҆ఆ͍ͯ͠Δ͔Λڭ͑ͯ͘Ε ·͢ɻ
QBHF Comparing benchmarks \
QBHF Comparing benchmarks Ὂ ϕϯνϚʔΫؒͷύϑΥʔϚϯεͷࠩΛஅ͢Δͷ໘Ͱ͕͢ɺ CFODITUBU͜ͷղܾ͠·͢ɻ
QBHF ૣ'JC Λվྑ͍ͨ͠ͷͰ͕͢ɺίʔυΛվྑͨ͠ޙͰɺ ͏ҰվྑલͷϕϯνϚʔΫΛऔΓ͍͕ͨ࣌ग़͖ͯͨΒ Ͳ͏͠·͠ΐ͏͔ɻ࣮HPUFTUʹલճͷϕϯνϚʔΫ݁ ՌΛੜͨ͠όΠφϦΛอଘ͓ͯ͘͜͠ͱ͕Ͱ͖ΔػೳΛ ఏڙ͢ΔDϑϥοά͕ଘࡏ͠·͢ɻվྑલͷόΠφϦ໊ UFTU͔ΒHPMEFOʹมߋ͢Δͷ͕௨ྫͷΑ͏Ͱ͢ɻ -c Ὂ
QBHF ϕϯνϚʔΫΛൺֱ͢Δҝ ʹ࠶ؼݺͼग़͠Λ̍ͭݮΒ ͠·͢ɻ Reduce recursive calls Ὂ
QBHF 'JC Ͱ'JC ͱൺͯͷվྑ͕֬ೝͰ͖·͢ɻιʔείʔυͷมߋ ޙʹͲͷ͘Β͍ͷվળ͕͋ͬͨͷ͔Λূ໌͢Δͷʹ༗༻Ͱ͢ɻࢄ͕େ͖͍ϕϯ νϚʔΫΛൺֱ͢Δͱ͖ҙɻ Comparing benchmarks
Ὂ
QBHF Oɺ༗ޮͩͱݟͳ͞ΕͨσʔλͷݸΛද͠·͢ɻσʔλͷغ٫͕ˋΛ͑ Δͱൺֱ͢Δαϯϓϧ͕গͳ͗͢ΔՄೳੑ͕͋Γ·͢ɻ Q͕Λ͑Δ͜ͱϕϯνϚʔΫ͕౷ܭతʹ༗ҙͰͳ͍͜ͱΛҙຯ͠·͢ɻ Qʹ͍ͭͯԼه͕ৄ͍͠Ͱ͢ɻ ౷ܭֶతݕఆͷ1ɺ౷ܭֶతʹ༗ҙɺ༗ҙࠩɺ༗ҙਫ४ͱԿ͔ʁ IUUQUPVLFJMJOLCBTJDTUBUJTUJDTQWBMVF@BOE@TJHOJpDBODF Comparing benchmarks Ὂ
QBHF Watch out for compiler optimisations \
QBHF ਐͰදͨ͠ͱཱ͖͍ͬͯΔ ϏοτͷΛฦ͠·͢ɻ͜ͷؔ ͷϕϯνϚʔΫΛͱΓ·͠ΐ ͏ɻ compiler optimisations Ὂ
QBHF ͜ͷ݁Ռͷඵ֓ͶΫϩοΫपͰ͢ɻΑͬͯ͜ͷ͔ͳΓ͓͔͍͠Ͱ͢ɻ $16ΫϩοΫ৴߸ʹ߹Θͤͯಈ࡞͠·͢ QPQDOUϦʔϑؔ ଞͷؔݺͼग़͠Λ͠ͳ͍ ʹͳ͍ͬͯ·͢ɻɻίϯύΠϥ͜ ͷؔΛΠϯϥΠϯల։Ͱ͖·͢ɻͦͯ͠QPQDOUɺͲͷάϩʔόϧมͷঢ়ଶʹ Өڹ͠·ͤΜɻ͕ͨͬͯ͠ɺݺͼग़ࣗ͠ମ͕ഉআ͞Ε͍ͯ·͢ɻ compiler
optimisations Ὂ
QBHF ϕϯνϚʔΫΛػೳͤ͞ΔͨΊʹΠϯ ϥΠϯԽΛແޮʹ͢Δ͜ͱଞͷϕϯ νϚʔΫʹӨڹ͕͋ΔͷͰ͓͢͢Ί ͠·ͤΜɻ্̎ͭίϯύΠϥ͕ϧʔ ϓຊମΛ࠷దԽͰ͖ͳ͍Α͏ʹ͢Δͨ Ίͷਪํ๏Ͱ͢ɻ compiler optimisations Ὂ
QBHF JOMJOJOHͳͲͷίϯύΠϥ࠷దԽͷঢ়گΛ֬ೝ͢ΔʹHDqBHTΛ͍·͢ɻ -gcflags Ὂ
QBHF ͞ΒʹڧྗͳJOMJOJOH͕(P͔ΒೖͬͯΔ IUUQTEPDTHPPHMFDPNQSFTFOUBUJPOE8DCMQKQGF,X":'0NK18.@RN/RM2L/B-K1PFEJUTMJEFJEQ Mid Stack inlining Ὂ
QBHF Conclusion \
QBHF (Pʹ͓͚ΔϕϯνϚʔΫ؆୯ʹऔΕΔ͕ɺ͍ํʹҙ͕ඞཁɻ ϕϯνϚʔΫͷڥͷఏࣔ౷Ұ ϕϯνϚʔΫͷ҆ఆੑͷ֬ೝ ͓͔͍͘͠Β͍͍࣌ϕϯνϚʔΫ࣌ͷίϯύΠϥ࠷దԽͷڍಈΛ֬ೝ Conclusion Ὂ
QBHF Additional Talk \
QBHF (P$POGFSFODF'VLVPLB Ͱొஃ͠·͢ʂ
Benchmark and Compiler Optimization In Go Go Un Conference May
27, 2019 @ po3rin