Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ArtNet - IBM OpenPOWER Cognitive Cup Contest Wi...
Search
Praveen Sridhar
November 15, 2016
Technology
1
1.2k
ArtNet - IBM OpenPOWER Cognitive Cup Contest Winning talk
ArtNet - IBM OpenPOWER Cognitive Cup Contest Winning talk
Praveen Sridhar
November 15, 2016
Tweet
Share
More Decks by Praveen Sridhar
See All by Praveen Sridhar
Attribute - Python library for Neural Network Interpretability
psbots
0
570
Keep calm and trust your model - On Explainability of Machine Learning Models
psbots
0
150
Talk on Innovation and Entrepreneurship at Rajagiri Business School, Kochi
psbots
0
46
Don't wait to Start-Up Start Exploring already!
psbots
0
140
Firefox OS
psbots
0
170
Firefox OS Indic Keyboard Google Summer of Code Project
psbots
0
710
Other Decks in Technology
See All in Technology
Webアプリケーションにオブザーバビリティを実装するRust入門ガイド
nwiizo
7
890
Evolución del razonamiento matemático de GPT-4.1 a GPT-5 - Data Aventura Summit 2025 & VSCode DevDays
lauchacarro
0
210
人工衛星のファームウェアをRustで書く理由
koba789
15
8.3k
Modern Linux
oracle4engineer
PRO
0
160
COVESA VSSによる車両データモデルの標準化とAWS IoT FleetWiseの活用
osawa
1
400
企業の生成AIガバナンスにおけるエージェントとセキュリティ
lycorptech_jp
PRO
2
200
プラットフォーム転換期におけるGitHub Copilot活用〜Coding agentがそれを加速するか〜 / Leveraging GitHub Copilot During Platform Transition Periods
aeonpeople
1
240
Snowflake Intelligenceにはこうやって立ち向かう!クラシルが考えるAI Readyなデータ基盤と活用のためのDataOps
gappy50
0
280
AIエージェントで90秒の広告動画を制作!台本・音声・映像・編集をつなぐAWS最新アーキテクチャの実践
nasuvitz
3
360
下手な強制、ダメ!絶対! 「ガードレール」を「檻」にさせない"ガバナンス"の取り方とは?
tsukaman
2
460
Terraformで構築する セルフサービス型データプラットフォーム / terraform-self-service-data-platform
pei0804
1
200
AWSで始める実践Dagster入門
kitagawaz
1
750
Featured
See All Featured
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Visualization
eitanlees
148
16k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
Rails Girls Zürich Keynote
gr2m
95
14k
Side Projects
sachag
455
43k
Scaling GitHub
holman
463
140k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
How to Ace a Technical Interview
jacobian
279
23k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Making Projects Easy
brettharned
117
6.4k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Transcript
ArtNet The new age Art Connoisseur ;) OpenPower Cognitive Cup
Winning Entry
Developer Challenge Experience Praveen Sridhar @psbots
About me Praveen Sridhar @psbots Machine Learning R&D for Recently
joined as Machine Learning Engineer at
Cognitive Cup Challenge Problem Can computers think “deeply” :P about
art?
What ArtNet Does ArtNet “knows” what a painting is about.
Be it a landscape or still life or a portrait, or any of the different art genres. Examples of genres : Still Life Cityscape Religious
Implementation ArtNet uses • a Convolution Neural Network to figure
out patterns in a painting • and classifies it into different genres
Implementation It uses the Keras Deep Learning library to train
the CNN model
Implementation The OpenPOWER Deep Learning Distribution Frameworks like Theano and
Tensorflow available as Pre-built binaries optimized for GPU acceleration Adding Keras was a breeze, since it runs on top of Theano or Tensorflow
Hyperparameter Optimization The Real Deal HYPER WHAT?
Hyperparameter Optimization The Real Deal Enter the “hyperas” library A
very simple convenience wrapper around hyperopt for fast prototyping with keras models.
Enter the “elephas” library Distributed Deep Learning with Keras &
Spark Thought : SuperVessel Cloud makes it a breeze to spin up multi node spark instances, why not use it as Nitrox! ;)
Going Forward • Predict the artist given a painting •
Help Social Science people in understanding art influences : ✴ which artist influenced whom? ✴ to what extent?
Thanks! Praveen Sridhar @psbots