Upgrade to Pro — share decks privately, control downloads, hide ads and more …

開発15年のAIネイティブでない 巨大サービスのAI最適化

Avatar for わたり わたり
November 13, 2025

開発15年のAIネイティブでない 巨大サービスのAI最適化

Avatar for わたり

わたり

November 13, 2025
Tweet

More Decks by わたり

Other Decks in Programming

Transcript

  1. わたり • CTO室 プロダクトチーム ◦ 現在はPOSシステム開発 • AIツール ◦ 2022年12月から利用(約3年)

    ◦ 社内 ▪ AI利用のルール作り / AIツール価値検証や開発最適化 ◦ プライベート ▪ AItuberでLive配信 ▪ PHPカンファレンス関西で使ったツールをVibeCodingで作成
  2. 前提: なんのAI使ってるの? AIエージェント: Cursor エディタ: PhpStorm 判断: 性能は「エージェント」より「基盤モデル」の影響が大きい 。 戦略: モデル縛りが少ない

    Cursorでモデル進化の恩恵を即享受。 ただしCursorの利用はAIエージェントとしてにとどめ、 エディタとしては静的解析や機械的な補完に富むPhpStormを利用
  3. 壁1: AIがレガシーも増幅する (As-Isへの固執) • コード生成時にAIが良くない実装に引っ張られてレガシーコードも増やす! 対策: コメントとルールによる AIの教育 • 「今の正解」を「*

    @deprecated xxxを使うこと」コメントやルールで to-beがわかるように記載。 効果: AIがレガシーを「増やす」から「減らす」になり、実装を進めれば負債が減る状態 へ。 after 私たちが直面した壁 before
  4. 私たちが直面した壁 壁2: メンバー間の AIスキル格差 • AIの使い方はGitには表れない。メンバー各自で学ぶ状態ではスキルに差がつく。 • 1ヶ月間Cursorの変更適用数が0のメンバーもいた。 対策: 輪読会とAIモブプロを交互に開催

    • 輪読会: メンバー間の認識が合い、書籍の内容を「個人の意見」ではなく「 チームの方針」にできる。 初回はリーダブルコードがお勧め。短時間で読めAIの出力改善にも繋がるので読む価値も上がっている。 • AIモブプロ: AIを使った実際の対応をモブプロですることで他メンバーの AI利用方法を学習。 効果: Cursorの適用数が4週連続0だったメンバーが2ヶ月後には1週間あたり適用数10以上へ増加
  5. 私たちが直面した壁 壁3: AIに仕様背景が届かない (暗黙知) • ドキュメントがAIが参照できない場所(社内 Wiki、別リポジトリなど)にあったりそもそも無いことも。 ◦ AIが「ドメイン知識」を理解できない!間違った計算式や仕様でコードを生成する。 対策:

    重要な知識はリポジトリに置く (Project as Code) • AIが知るべき話はAIが読める場所にMarkdown (.md) として設置。 ◦ CONTRIBUTING.mdやSTRUCTURE.mdを初めとしたmdファイルを作成し、 Cursor Rulesにパスを記載しAIが必要なときに参照できるように。 効果: • AIがプロジェクトの特性を理解した提案を出してくれる ように変化 • 離れた位置にある関連ファイルも修正できるようになった
  6. 私たちが直面した壁 壁4: レビューの壁 (時間がない ) • AI支援により生成するコード量( MR数)は増加 しておりレビュアーの負荷が爆上がり。 対策:

    AIに「レビューさせる」 • CodeRabbit のようなAIレビューツールを導入しAIに1次レビュー を任せる。 ◦ ツールは何でもよい。CodeRabbitはCIへのAI自動レビュー導入が簡単なのでまず入れるにはよい選択肢。 効果: • 人間のレビュアーはAIによる指摘が解消された後で、より本質的なロジックのレビューに集中 。 • 「(AIが言うくらいだから)改善しないと」という意識変化、メンバー間の指摘による心理的摩擦の減少 に貢献。
  7. トークンの節約Tips 最近の課題として、利用上限にあたるメンバーが出てきている。 • 指示修正は元プロンプトの編集で ◦ AIが間違えた時、追加の指示ではなく 前のプロンプトの編集で指示を追加 。 1. 時を戻してAIに”間違った内容”を覚えさせないことでブレを防ぐ。

    2. コンテキスト(トークン)を節約し、精度を上げる。 1. 誤解を恐れずに言えば、コンテキストウィンドウのサイズは バリデーションの閾値 でし かなく収めればその量を理解できるというわけではない。 2. LLMは毎回それまでのインプットとアウトプットも食わせている。 a. スレッドが長くなるほど 1回あたりのトークン消費が増加。 • 同様の理由でタスクを小さく分割して AIに依頼できるとよい。