Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Genetic Algorithms
Search
Luke Williams
July 16, 2020
Science
0
82
Genetic Algorithms
Solving problems the natural way
Luke Williams
July 16, 2020
Tweet
Share
More Decks by Luke Williams
See All by Luke Williams
Useful Mental Models For Product Engineers
redroot
0
130
Unity Talk
redroot
0
37
Neural Networks - a brief introduction by a fan
redroot
0
470
Web Accessibility in 2019
redroot
0
500
redux-saga
redroot
0
590
Redis - Lightning Talk @ RefME
redroot
0
760
Wordpress Multitenancy
redroot
0
1.5k
Embracing the Customizer
redroot
2
770
Other Decks in Science
See All in Science
データマイニング - ウェブとグラフ
trycycle
PRO
0
210
Lean4による汎化誤差評価の形式化
milano0017
1
380
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
130
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
1k
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
180
Rashomon at the Sound: Reconstructing all possible paleoearthquake histories in the Puget Lowland through topological search
cossatot
0
170
データベース03: 関係データモデル
trycycle
PRO
1
320
会社でMLモデルを作るとは @電気通信大学 データアントレプレナーフェロープログラム
yuto16
1
430
【RSJ2025】PAMIQ Core: リアルタイム継続学習のための⾮同期推論・学習フレームワーク
gesonanko
0
430
2025-06-11-ai_belgium
sofievl
1
210
サイコロで理解する原子核崩壊と拡散現象 〜単純化されたモデルで本質を理解する〜
syotasasaki593876
0
130
高校生就活へのDA導入の提案
shunyanoda
0
6.1k
Featured
See All Featured
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
Typedesign – Prime Four
hannesfritz
42
2.9k
BBQ
matthewcrist
89
9.9k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Optimising Largest Contentful Paint
csswizardry
37
3.5k
The Pragmatic Product Professional
lauravandoore
37
7.1k
Six Lessons from altMBA
skipperchong
29
4.1k
Writing Fast Ruby
sferik
630
62k
How to train your dragon (web standard)
notwaldorf
97
6.4k
A Modern Web Designer's Workflow
chriscoyier
698
190k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Transcript
Genetic Algorithms Solving problems the natural way
Making Decisions - go to the market?
Making decisions - which car to buy?
Making decisions - mimic art? wizardry! 50 semi transparent shapes
Mona Lisa
Designing a car by mistake
Under the hood Candidates Genome Fitness List of candidate solutions
to the problem. “Genetic” code for each candidate that describes the characteristics that will “evolve” How to determine the “fittest” candidates
Under the hood Candidates Genome Fitness 14aF2bdz12 9avg2bc1sd 44bg92jcks 120m
90m 1m
Under the hood 14aF2bdz12 shape wheel size wheel position wheel
density chasis density
Under the hood Candidates Genome Fitness 14aF2bdz12 14aG2bdz12 25aF2cdz12 ?
? ?
Under the hood Candidates Genome Fitness 14aF2bdz12 14aF2bc1td ? ?
? 9avg2bc1sd
Under the hood Clone/mate to build the next generation Find
the fittest candidate(s) Randomly mutate the genome Build all candidates in generation
In the wild
In the wild
In the wild - Flight / train scheduling - Timetabling
- e.g at a school - Factory floor design - Mechanical engineering - Music production - Financial modelling - Code-breaking - Artificial Intelligence
Genetic Algorithms Solving problems the natural way