Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GPTsをMVPに使うアジャイルな社内LLMツール開発 / Agile in-house LL...
Search
r-kagaya
January 30, 2024
Programming
6
2.8k
GPTsをMVPに使うアジャイルな社内LLMツール開発 / Agile in-house LLM tool development using GPTs as MVPs
生成AI新年会2024 LT資料
https://algomatic.connpass.com/event/306870/
r-kagaya
January 30, 2024
Tweet
Share
More Decks by r-kagaya
See All by r-kagaya
MCPでVibe Working。そして、結局はContext Eng(略)/ Working with Vibe on MCP And Context Eng
rkaga
5
2k
一人でAIプロダクトを作るための工夫 〜技術選定・開発プロセス編〜 / I want AI to work harder
rkaga
14
3k
テストから始めるAgentic Coding 〜Claude Codeと共に行うTDD〜 / Agentic Coding starts with testing
rkaga
19
7.2k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
57
36k
CursorとDevinが仲間!?AI駆動で新規プロダクト開発に挑んだ3ヶ月を振り返る / A Story of New Product Development with Cursor and Devin
rkaga
7
3.3k
データと事例で振り返るDevin導入の"リアル" / The Realities of Devin Reflected in Data and Case Studies
rkaga
3
4.9k
AIコーディングエージェントを 「使いこなす」ための実践知と現在地 in ログラス / How to Use AI Coding Agent in Loglass
rkaga
4
2.8k
AIコーディングワークフローの試行 〜AIエージェント×ワークフローでの自動化を目指して〜
rkaga
3
6.4k
Devin入門と最近のアップデートから見るDevinの進化 / Introduction to Devin and the Evolution of Devin as Seen in Recent Update
rkaga
11
7.2k
Other Decks in Programming
See All in Programming
ECS初心者の仲間 – TUIツール「e1s」の紹介
keidarcy
0
150
「待たせ上手」なスケルトンスクリーン、 そのUXの裏側
teamlab
PRO
0
300
詳解!defer panic recover のしくみ / Understanding defer, panic, and recover
convto
0
230
フロントエンドのmonorepo化と責務分離のリアーキテクト
kajitack
2
160
Vue・React マルチプロダクト開発を支える Vite
andpad
0
110
MCPで実現するAIエージェント駆動のNext.jsアプリデバッグ手法
nyatinte
7
1.1k
Ruby Parser progress report 2025
yui_knk
1
300
もうちょっといいRubyプロファイラを作りたい (2025)
osyoyu
0
320
The state patternの実践 個人開発で培ったpractice集
miyanokomiya
0
160
機能追加とリーダー業務の類似性
rinchoku
2
1.1k
時間軸から考えるTerraformを使う理由と留意点
fufuhu
14
4.4k
AIエージェント開発、DevOps and LLMOps
ymd65536
1
380
Featured
See All Featured
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Building Applications with DynamoDB
mza
96
6.6k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
Navigating Team Friction
lara
189
15k
GitHub's CSS Performance
jonrohan
1032
460k
The Art of Programming - Codeland 2020
erikaheidi
55
13k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Producing Creativity
orderedlist
PRO
347
40k
Transcript
1 ©2024 Loglass Inc. GPTsをMVPに使う アジャイルな社内LLMツール開発 2024.1.30 r.kagaya 生成AI新年会2024@GMO Yours・フクラス
2 新卒で入社したヤフー株式会社で、 ID連携システムの保守・運 用開発を経験したのち、 ID連携システムのフルリプレイス PJに 従事。 その後、2022年に株式会社ログラスに入社。 ソフトウェアエンジニアとしてマスタ管理等の開発、イネーブルメ ントチームの一員として横断課題の解決に取り組んだのち、現
在は生成AI/LLMチームの立ち上げを行う。 X: @ry0_kaga 株式会社ログラス r-kagaya
3 ©2024 Loglass Inc. ログラスについて(5秒) 企業価値を向上する 経営管理クラウド
4 ©2024 Loglass Inc. 4 次世代型 経営管理クラウド
5 ©2024 Loglass Inc. 経営企画は「企業価値の向上」をミッションに、企業経営にまつわるあらゆる業務を担っている
6 6 ©2024 Loglass Inc. β版プレスリリース発表 初期リリースでは予実分析に特化 LLMも用いて、分析結果・レポートを生成。 さらに分析結果・データに対して指示を重ねるこ とで追加で示唆を得る、加工を行える(e.g:
報告 用に3行で特定部署のサマリ) 90点ではないが60点の分析結果を量産、そこま ではシステムがやってくれる その上でさらなる分析・意思決定をサポートする アシスタントの世界観を目指す 出典:https://prtimes.jp/main/html/rd/p/000000094.000052025.html
7 ©2024 Loglass Inc. テーマ GPTsをMVP・仮説検証に使って、アジャイルな社内LLMツール開発 出典:Making sense of MVP
(Minimum Viable Product) - and why I prefer Earliest Testable/Usable/Lovable
8 ©2024 Loglass Inc. LLMと検索を組み合わせた企業情報調査ツール 1. 商談がSalesforceで作られる 2. 商談先企業の情報を検索 3.
LLMで要約・まとめ 4. Slackで担当者にメンション https://twitter.com/yuto_1933/status/1740264720714875147
9 ©2024 Loglass Inc. きっかけ・課題感 • 「全セールスは事前準備で商談先企業の基本情報やビジネスモデルの概要を掴ん で、提案ストーリーを考える」 ◦
by 中途同期入社セールスMgr • よく聞いてみると事前調査で1商談あたり2,30分かかっている ◦ 数サイトを回遊し、標準FMTに合わせる ◦ 商談数の分だけリサーチ業務が発生 -> 「概要が掴めたら十分そうだし、LLMで良い感じに作れるのでは...?」
10 ©2024 Loglass Inc. どう進めたか? • とはいえ使われるかわからないの で、最初はGPTsでMVPを作った • 作成時間は1時間程度
• 企業名を投げたら、Bing Searchを 使い、指定のFMTに合わせて情報 を抽出してくれるようにするだけ ◦
11 ©2024 Loglass Inc. GPTsの利点と脱GPTs 利点 • 低コストでFBを回収できる • アウトプットのレベル感やFMTもある程度掴める
-> GPTsで評判を確認した上で、より業務フローに入り込むために移行
12 ©2024 Loglass Inc. 利用実態・効果 今の所、そこそこ使われている 手動で調査していた時間の一部は代替出来て、ROIも悪くなさそう
13 ©2024 Loglass Inc. ツール構成 基本的にはZapier OpenAI APIを叩けるので結構頑張れる • Function
CallingやAssistant APIも • Create AssistantもFind Assistantも Upload Fileも出来る • Zapierだけで特定ファイルを元に回答し てくれるBotとかをSlackに作れる(たぶ ん)
14 ©2024 Loglass Inc. 蛇足 LLM系ツールならStackも良さそう -> LLMを使ったワークフロー作成に特化した Zapierみたいなノーコードツール
15 ©2024 Loglass Inc. 蛇足 一通り揃えようという気概を感じてる
16 ©2024 Loglass Inc. sell work, not product • LLMの登場、AIの民主化が進み、個別業務に向けてAI/LLMを使える世界
• building a company leveraging LLMs to sell work • EvenUp ◦ 人身傷害の弁護士向けにdemandパッケージ作成の業務(Work)自体を販売 ◦ ◦ ◦ 出典:https://www.sarahtavel.com/p/ai-startups-sell-work-not-software
17 ©2024 Loglass Inc. まとめ • LLMの登場でより幅広く・個別の業務改善にもAI/LLMを使えるように • GPTsをMVPに使うとさらに小さく実験できる ◦
ChatGPTチームプランも嬉しい • ただ多くの人・業務の起点はNot ChatGPT • ChatGPT以外で完結、勝手に結果が届く・連携される方が嬉しいケースも • その場合でもGPTsから始めることで無理・無駄なく漸進的に進化出来る
18
19 ©2024 Loglass Inc. Assistant Bot By Zapier こんな感じとか?たぶん 1.
特定のドライブやNotionDBにファイルを 置く 2. 上記イベントをZapierで検知して、 Assistantを作成 && ファイルをアップ ロード 3. slackでメンション何らかAssistantを特 定する情報と質問を一緒にもらって、ア シスタントをFindして結果を返す