Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
そのAIレビュー、レビューしてますか? / Are you reviewing those A...
Search
r-kagaya
January 21, 2026
Programming
0
160
そのAIレビュー、レビューしてますか? / Are you reviewing those AI reviews?
CodeRabbit User Group Tokyo #0 〜立ち上げキックオフ〜の登壇資料です。
https://crug.connpass.com/event/378621/
r-kagaya
January 21, 2026
Tweet
Share
More Decks by r-kagaya
See All by r-kagaya
AIエージェント、”どう作るか”で差は出るか? / AI Agents: Does the "How" Make a Difference?
rkaga
3
1.8k
Context is King? 〜Verifiability時代とコンテキスト設計 / Beyond "Context is King"
rkaga
10
1.6k
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
8
3.7k
MCPでVibe Working。そして、結局はContext Eng(略)/ Working with Vibe on MCP And Context Eng
rkaga
5
3.1k
一人でAIプロダクトを作るための工夫 〜技術選定・開発プロセス編〜 / I want AI to work harder
rkaga
14
3.4k
テストから始めるAgentic Coding 〜Claude Codeと共に行うTDD〜 / Agentic Coding starts with testing
rkaga
19
8.3k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
58
41k
CursorとDevinが仲間!?AI駆動で新規プロダクト開発に挑んだ3ヶ月を振り返る / A Story of New Product Development with Cursor and Devin
rkaga
7
4.2k
データと事例で振り返るDevin導入の"リアル" / The Realities of Devin Reflected in Data and Case Studies
rkaga
3
5.9k
Other Decks in Programming
See All in Programming
Claude Codeの「Compacting Conversation」を体感50%減! CLAUDE.md + 8 Skills で挑むコンテキスト管理術
kmurahama
1
760
Canon EOS R50 V と R5 Mark II 購入でみえてきた最近のデジイチ VR180 事情、そして VR180 静止画に活路を見出すまで
karad
0
150
フロントエンド開発の勘所 -複数事業を経験して見えた判断軸の違い-
heimusu
7
2.6k
AtCoder Conference 2025
shindannin
0
950
Vibe codingでおすすめの言語と開発手法
uyuki234
0
180
re:Invent 2025 のイケてるサービスを紹介する
maroon1st
0
170
MDN Web Docs に日本語翻訳でコントリビュート
ohmori_yusuke
0
510
2年のAppleウォレットパス開発の振り返り
muno92
PRO
0
180
gunshi
kazupon
1
140
AI Agent の開発と運用を支える Durable Execution #AgentsInProd
izumin5210
7
2k
ThorVG Viewer In VS Code
nors
0
700
rack-attack gemによるリクエスト制限の失敗と学び
pndcat
0
210
Featured
See All Featured
A Tale of Four Properties
chriscoyier
162
24k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
100
Google's AI Overviews - The New Search
badams
0
890
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
30 Presentation Tips
portentint
PRO
1
190
The Limits of Empathy - UXLibs8
cassininazir
1
200
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
GraphQLとの向き合い方2022年版
quramy
50
14k
Six Lessons from altMBA
skipperchong
29
4.1k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
99
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
91
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
43
Transcript
2026年1月21日 Asterminds株式会社 r.kagaya CodeRabbit User Group Tokyo #0 〜立ち上げキックオフ〜 そのAIレビュー、レビューしてますか?
〜AI as a Judgeから考えるAIコードレビューの育成〜
2022年に株式会社ログラスに入社 経営管理SaaSの開発、開発生産性向上に取り組んだのち、 生成AI/LLMチームを立ち上げ、新規AIプロダクトの立ち 上げに従事、その後、25年8月に独立・現職 翻訳を担当したAIエンジニアリングが オライリージャパンより出版 Asterminds(アスターマインズ)株式会社 共同創業者・CTO r.kagaya(@ry0_kaga) 自己紹介
そのAIコードレビュー、レビューしてますか?
フィードバックして、育てられていますか?
AIコードレビューは 「人間の代わりに、コードを“判断”させている」
AIコードレビューは 「人間の代わりに、コードを“判断”させている」 LLM as a Judgeの知見が使えるのでは?
LLM as a Judgeの事例・プラクティス から考えるAIコードレビューの育て方 今日の内容
CodeRabbitの機能解説は少なめです...🙇
簡単にLLM as a Judge とは
全ての土台となる評価 信頼できる評価軸があるからこその体系的な改善 「この修正で本当にシステムは良くなったか?」に自信を持って答えるためには? Vibe Check(雰囲気での確認)には限界がある なぜ難しいのか? オープンエンドな出力は正解が一つに収斂しないため AIエンジニアリングの世界においては、オープンエンドな出力の利用が 増える。 なぜ重要なのか?
評価パイプライン・基準がなければ、開発は単なる「手探りの試行錯誤」 に陥る可能性
評価の主体(誰が、または何が評価を行うか)の分類 最近は、「AIに評価させる」ことがアプローチの一つとして浸透してきている では、どうやって評価するのか? AIコードレビュー、ほぼこれ?
LLM as a Judgeとは AIモデル(生成応答)を評価するために、別のAIモデル(評価者)を利用する by オライリーAIエンジニアリング 速度とコスト効率 参照データ不要 高い相関性
人間の評価者(アノ テーター)と比較し て、はるかに高速か つ安価に評価を行う ことができる 正解データ(参照応 答)が存在しない本番 環境のデータに対し ても、プロンプトに基 づいて品質や安全性 を評価できる 人間の評価者と強い 相関(85%の一致率 など)を示すことが研 究で報告されており、 信頼性がある程度確 認されている 柔軟性 プロンプトを変更す るだけで、ハルシネー ションの検出、トーン の確認、役割(ロール プレイ)の維持など、 あらゆる基準に基づ いた評価が可能
LLM as a Judgeの特性・課題 評価基準は標準化されておらず、使用するツールやプロンプトによっ て定義やスコアリングが異なり、比較が困難 非一貫性 (Inconsistency) 確率的に動作するため、同じ入力に対しても実行するたびに異なるス コアを出力する可能性があり、評価の再現性が損なわれることがある
独自のバイアス コードレビューと文章の校正等の異なる点は、実行して検証できること (機能正確性) AIコードレビューを育てる上でも強力なフィードバック 基準の曖昧さ AI as a Judgeには特有の性質に起因する課題や特徴が存在
LLM as a Judgeの課題: バイアス これらのバイアスは、コードレビューでも起きうる問題か? 自己バイアス 位置バイアス 冗長性バイアス 自分が生成したものを高く
評価する モデルは、自分自身(または 同じシリーズのモデル)が生 成した応答を高く評価する傾 向 選択肢の順序を変えるだけ で評価が変わる 2つの応答を比較する際、内 容に関わらず「最初に提示さ れた応答」を好む傾向 長い回答を「良い」と判断し がち 内容の質に関わらず、より長 い回答を好む傾向
LLM as a Judgeの事例・プラクティス から考えるAIコードレビューの育て方
LLM as a Judgeから考えるAIコードレビューの「育て方」 LLMは自分の生成物を高評価しがち Anthropic公式ベストプラクティス 「1つのClaudeがコードを書き、 別のClaudeがレビューする」 フィードバックルー プの構築
「なぜそれがバグなのか」「どう修正すべきか」を説明させることで、人 間のレビュアーがAIの判断を検証(メタ評価)しやすくなる 評価基準(ルーブリック) の明確化 「AI as a Judge」を成功させる鍵は、人間が曖昧な指示を出すので はなく、明確な採点基準(ルーブリック)を与える コードレビューにおいても、「良いコードとは何か」を定義する必要 マルチレビュー集約 SWR-Benchでは、複数回レビューして集約するとF1が43%向上 別の研究では、複数モデルの多数決でバイアスが30-40%削減 1回で完璧を求めるより、複数の視点を組み合わせた方がいい 生成と評価の分離
評価基準の明文化 「何を見ればいいか」、「何を評価するか」を具体的に明示 • 基準の曖昧さはAI as a Judgeの精度低下の主因の一つ • 質問固有の基準 >
汎用基準 5段階は判定が難しいので、 2値 or 3段階の方が楽という話も別途
CodeRabbitなら? path_instructionsで評価基準を指示 ディレクトリごとに「何を見てほしいか」「どう判断すべきか」を記述 https://docs.coderabbit.ai/reference/configuration#param-path-instructions
LLM as a Judgeから考えるAIコードレビューの「育て方」 LLMは自分の生成物を高評価しがち Anthropic公式ベストプラクティス 「1つのClaudeがコードを書き、 別のClaudeがレビューする」 フィードバックルー プの構築
「なぜそれがバグなのか」「どう修正すべきか」を説明させることで、人 間のレビュアーがAIの判断を検証(メタ評価)しやすくなる 評価基準(ルーブリック) の明確化 「AI as a Judge」を成功させる鍵は、人間が曖昧な指示を出すので はなく、明確な採点基準(ルーブリック)を与える コードレビューにおいても、「良いコードとは何か」を定義する必要 マルチレビュー集約 SWR-Benchでは、複数回レビューして集約するとF1が43%向上 別の研究では、複数モデルの多数決でバイアスが30-40%削減 1回で完璧を求めるより、複数の視点を組み合わせた方がいい 生成と評価の分離 Anthropicの公式プラグインPR Review Toolkitも カバレッジ・設計等の役割別の複数エージェント
コードレビューはマルチエージェント向きのタスクか? シングル or マルチエージェントの整理の一つが、読み込み/書き込みのどちらの 側面が強いか? コンテキストの一貫性の要求が比較的低い、読み込み中心の並列探索がマルチ エージェントに向いてると考察
説明可能性:スコアだけでなく、理由を語る AIコードレビューを育てるための判断基準として理由を語らせる • 「このレビューコメントは本当に正しいですか?」と自問自答させ、間違いが あれば修正させる • レビュー結果に対して「なぜその指摘をしたのか」を振り返らせ、論理的な不 整合がないかを確認する (CodeRabbitで上手く実現する方法があれば教えて貰えたら嬉しい...!)
既存の枠組みや前提そのものを疑い、「なぜこの前提が正しいのか」「目的はこれ でよいのか」を根本から問い直す学習プロセス
既存の枠組みや前提そのものを疑い、「なぜこの前提が正しいのか」「目的はこれ でよいのか」を根本から問い直す学習プロセス 「この指摘基準は、今のコード・チーム・目的に本当に 合っているのか?」を問う
さらに育てる: Learnings機能 チーム固有の基準そのものが更新されていくLearnings > CodeRabbitはあなたとの対話から得られた知見を活用・蓄積し、時間の経 過とともに学習を強化します。 https://docs.coderabbit.ai/guides/learnings
理由を説明させたり、良い・悪いレビューを問いながら レビュー基準そのものをダブルループ学習で育てていく そのための機能もCodeRabbitにある
From Code to Courtroom: LLMs as the New Software Judges
ソフトウェア工学におけるLLM-as-a-Judgeの包括的調査 コード品質、セキュリティ、ドキュメント等の評価にLLMを活用する研究を体系化 https://arxiv.org/abs/2503.02246
まとめ
まとめ • AIコードレビューは評価基準とフィードバックで育てるもの • LLM as a Judgeの事例やプラクティスは、AIコードレビューのレビューや 育成を考える上で、参考になる点はある ◦
今回取り上げられなかった内容やTips、学びを得られそうな事例/研究 は沢山ある • コーディングエージェントの圧倒的な手数による可能性を感じる時代、コー ディング以外のプロセスのスクラップ&ビルドは求められる ◦ コードレビューはその代表例に感じる
そのAIコードレビュー、レビューしてますか? フィードバックして、育てられていますか?
終わり