Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NLP2019報告
Search
Atom
March 25, 2019
0
110
NLP2019報告
Atom
March 25, 2019
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
roraidolaurent
0
98
文献紹介 / Knowledge Tracing with GNN
roraidolaurent
0
100
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
60
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
2
2.8k
Graph Convolutional Networks
roraidolaurent
0
240
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
76
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
120
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
120
ポッキー数列の加法定理 / Pocky number additon theorem
roraidolaurent
0
220
Featured
See All Featured
Skip the Path - Find Your Career Trail
mkilby
0
27
What does AI have to do with Human Rights?
axbom
PRO
0
1.9k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
180
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Balancing Empowerment & Direction
lara
5
830
Raft: Consensus for Rubyists
vanstee
141
7.3k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
WCS-LA-2024
lcolladotor
0
390
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
30 Presentation Tips
portentint
PRO
1
180
Transcript
NLP2019 報告会 第25回言語処理学会 報告会 2019/3/25 長岡技術科学大学 自然言語処理研究室 吉澤 亜斗武
Contents 1. 興味をもった発表 (手法) ・E5-1:ExpertとImitatorの混合ネットワークによる 大規模半教師あり学習 ・E6-1:Conditional VAEに基づく多様性を考慮したイベント予測 2. 所感
・テーマセッション:A4/D4 ・興味をもたせるプレゼン ・研究する上で 2
ExpertとImitatorの混合ネットワークによる大規模半教師あり学習 ・半教師あり学習を現実的な時間でスケーラブルな学習したい. ・少量のラベル付きデータで学習する際,偽の特徴量を見抜くの が難しい.(分類:“this is a”) ・従来の手法:Expert(LSTMとMLPで構成) ・部分的な特徴量を抽出するCNN:Imitator を加えて, 並列計算を可能にした.
3
ExpertとImitatorの混合ネットワークによる大規模半教師あり学習 4
ExpertとImitatorの混合ネットワークによる大規模半教師あり学習 ・Expert はラベル付きデータによって学習し,Imitator は Expert を真似るようにラベルなしデータで学習する. ・偽の特徴量は,大量のラベルなしデータによって抽出されない ・単に学習が並列計算できるだけでなく,分類タスクにおいて 汎化性能の向上が確認できた ・理論上は他のタスクにも使えるはず
5
Conditional VAEに基づく多様性を考慮したイベント予測 ・多様性のあるイベント予測をしたい. ・Conditional VAE をモデルとし,さらに出力から入力信号に 復元するreconstructorを追加し,目的関数を組み込む. ・クラウドソーシングによって評価し,妥当性・多様性ともに ベースラインを上回った. 6
Conditional VAEに基づく多様性を考慮したイベント予測 7
2. 所感 8 ・D4:談話研究と言語処理,人工知能研究の連携に向けて ポライトネスやラポールの必然性を実感する一方で, 対話・人工知能へどのように応用していくか? ・A4:実世界にグラウンドされた言語処理 概念をいかに獲得していくか?
2. 所感 9 ・興味をもたせるプレゼン YANSで話した人が研究について熱心に語っており,一番興味 がプレゼンが上手だった. ・研究する上で サーベイは重要.(学会こわい)