Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介:Bayesian Optimization of Text Representations
Search
Atom
April 08, 2019
Technology
0
120
文献紹介:Bayesian Optimization of Text Representations
長岡技術科学大学
自然言語処理研究室
吉澤亜斗武
Atom
April 08, 2019
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
roraidolaurent
0
76
文献紹介 / Knowledge Tracing with GNN
roraidolaurent
0
77
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
47
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
1
2.7k
Graph Convolutional Networks
roraidolaurent
0
210
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
59
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
90
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
98
ポッキー数列の加法定理 / Pocky number additon theorem
roraidolaurent
0
190
Other Decks in Technology
See All in Technology
CZII - CryoET Object Identification 参加振り返り・解法共有
tattaka
0
380
なぜ私は自分が使わないサービスを作るのか? / Why would I create a service that I would not use?
aiandrox
0
750
技術的負債解消の取り組みと専門チームのお話 #技術的負債_Findy
bengo4com
1
1.3k
Classmethod AI Talks(CATs) #16 司会進行スライド(2025.02.12) / classmethod-ai-talks-aka-cats_moderator-slides_vol16_2025-02-12
shinyaa31
0
110
2/18/25: Java meets AI: Build LLM-Powered Apps with LangChain4j
edeandrea
PRO
0
120
室長と気ままに学ぶマイクロソフトのビジネスアプリケーションとビジネスプロセス
ryoheig0405
0
370
開発スピードは上がっている…品質はどうする? スピードと品質を両立させるためのプロダクト開発の進め方とは #DevSumi #DevSumiB / Agile And Quality
nihonbuson
2
3k
Larkご案内資料
customercloud
PRO
0
650
リアルタイム分析データベースで実現する SQLベースのオブザーバビリティ
mikimatsumoto
0
1.4k
Developer Summit 2025 [14-D-1] Yuki Hattori
yuhattor
19
6.2k
全文検索+セマンティックランカー+LLMの自然文検索サ−ビスで得られた知見
segavvy
2
110
バックエンドエンジニアのためのフロントエンド入門 #devsumiC
panda_program
18
7.5k
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.1k
Building an army of robots
kneath
303
45k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
How to Think Like a Performance Engineer
csswizardry
22
1.3k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Building Flexible Design Systems
yeseniaperezcruz
328
38k
Java REST API Framework Comparison - PWX 2021
mraible
28
8.4k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Code Reviewing Like a Champion
maltzj
521
39k
For a Future-Friendly Web
brad_frost
176
9.5k
Making the Leap to Tech Lead
cromwellryan
133
9.1k
Transcript
Bayesian Optimization of Text Representations Dani Yogatama, Lingpeng Kong, Noah
A.Smith 文献紹介 2019/4/8 長岡技術科学大学 自然言語処理研究室 吉澤 亜斗武 Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2100–2105, Lisbon, Portugal, 17-21 September 2015.
Abstract ・機械学習の手法において,入力するテキストの表現方法を 逐次的最適化によって自動決定する方法を提案 ・標準的な線形モデルがニューラルネットワークなどの 非線形モデルに迫る性能を発揮 ・特に,トピック分類や感情分析において有効 2
1. Introduction ・機械学習の入力にテキストを入れる際,複数のテキスト 表現があり,その比較実験に時間がかかることが多い. 例)stop words を取り除くか,否か? 単語の重みづけは二値か,あるいは TF-IDF か?
・これらの組み合わせの決定は,パフォーマンスに重要 ・ハイパーパラメータの最適化と同様に扱えるのでは? ・sequential model based optimization (SMBO) を適応する. 3
2. Problem Formulation and Notation ・訓練データ: = . 1 ,
, 1 , ⋯ , . 𝑛𝑛 , , 𝑛𝑛 . 𝑛𝑛 : 番目の入力文書 , 𝑛𝑛 :出力空間(分類先) ・開発データを用いて,適当な指標(分類精度,尤度,F値)を 用いてハイパーパラメータを調整する. ・入力のベクトル表現: ・ = () 4
3. Bayesian Optimization 5
3. Bayesian Optimization 6 Tree-structured Parzen estimator (TPE)
3. Bayesian Optimization 7
4. Experiments 8 ・本手法をロジスティック 回帰に適用した. ・Hyperparameterの推定の 試行は30回行った. ・ベースラインと同じ訓練/ テストを行い,開発データは 訓練データのうち2割を使う.
4. Experiments 9 ・Amazonの家電製品の レビュー ・IMDB の映画のレビュー ・上記の感情の2値分類
4. Experiments 10 ・米国議会の議論のデータセット(賛成,反対の投票の予測)
4. Experiments 11 ・20のトピック分類(20Newsgroups)
4. Experiments 12
5. Discussion 13
6. Conclusion 14 ・ベイズ最適化によってさまざまな分類問題に対して テキスト表現に関する選択の最適化を行った. ・トピック分類と感情分析において標準的な線形モデル (ロジスティック回帰)が既存の最高精度に迫ることを示した.