Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介:Bayesian Optimization of Text Representations
Search
Atom
April 08, 2019
Technology
0
120
文献紹介:Bayesian Optimization of Text Representations
長岡技術科学大学
自然言語処理研究室
吉澤亜斗武
Atom
April 08, 2019
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
roraidolaurent
0
80
文献紹介 / Knowledge Tracing with GNN
roraidolaurent
0
83
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
50
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
1
2.8k
Graph Convolutional Networks
roraidolaurent
0
220
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
62
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
93
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
100
ポッキー数列の加法定理 / Pocky number additon theorem
roraidolaurent
0
200
Other Decks in Technology
See All in Technology
こんなデータマートは嫌だ。どんな? / waiwai-data-meetup-202504
shuntak
1
260
Proxmox VE超入門 〜 無料で作れるご自宅仮想化プラットフォームブックマークする
devops_vtj
0
230
数百台のオンプレミスのサーバーをEKSに移行した話
yukiteraoka
0
770
OPENLOGI Company Profile
hr01
0
62k
「ラベルにとらわれない」エンジニアでいること/Be an engineer beyond labels
kaonavi
0
220
”知のインストール”戦略:テキスト資産をAIの文脈理解に活かす
kworkdev
PRO
8
2.5k
GitHub MCP Serverを使って Pull Requestを作る、レビューする
hiyokose
2
500
大規模プロジェクトにおける 品質管理の要点と実践 / 20250327 Suguru Ishii
shift_evolve
0
310
OPENLOGI Company Profile for engineer
hr01
1
23k
Amebaにおける Platform Engineeringの実践
kumorn5s
5
810
AIエージェント開発における「攻めの品質改善」と「守りの品質保証」 / 2024.04.09 GPU UNITE 新年会 2025
smiyawaki0820
0
140
Startups On Rails 2025 @ Tropical on Rails
irinanazarova
0
160
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
22
2.6k
Designing for Performance
lara
606
69k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
102
19k
The Pragmatic Product Professional
lauravandoore
33
6.5k
BBQ
matthewcrist
88
9.6k
Large-scale JavaScript Application Architecture
addyosmani
511
110k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
8
720
Why Our Code Smells
bkeepers
PRO
336
57k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
25k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
28
1.6k
Stop Working from a Prison Cell
hatefulcrawdad
268
20k
Documentation Writing (for coders)
carmenintech
69
4.7k
Transcript
Bayesian Optimization of Text Representations Dani Yogatama, Lingpeng Kong, Noah
A.Smith 文献紹介 2019/4/8 長岡技術科学大学 自然言語処理研究室 吉澤 亜斗武 Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2100–2105, Lisbon, Portugal, 17-21 September 2015.
Abstract ・機械学習の手法において,入力するテキストの表現方法を 逐次的最適化によって自動決定する方法を提案 ・標準的な線形モデルがニューラルネットワークなどの 非線形モデルに迫る性能を発揮 ・特に,トピック分類や感情分析において有効 2
1. Introduction ・機械学習の入力にテキストを入れる際,複数のテキスト 表現があり,その比較実験に時間がかかることが多い. 例)stop words を取り除くか,否か? 単語の重みづけは二値か,あるいは TF-IDF か?
・これらの組み合わせの決定は,パフォーマンスに重要 ・ハイパーパラメータの最適化と同様に扱えるのでは? ・sequential model based optimization (SMBO) を適応する. 3
2. Problem Formulation and Notation ・訓練データ: = . 1 ,
, 1 , ⋯ , . 𝑛𝑛 , , 𝑛𝑛 . 𝑛𝑛 : 番目の入力文書 , 𝑛𝑛 :出力空間(分類先) ・開発データを用いて,適当な指標(分類精度,尤度,F値)を 用いてハイパーパラメータを調整する. ・入力のベクトル表現: ・ = () 4
3. Bayesian Optimization 5
3. Bayesian Optimization 6 Tree-structured Parzen estimator (TPE)
3. Bayesian Optimization 7
4. Experiments 8 ・本手法をロジスティック 回帰に適用した. ・Hyperparameterの推定の 試行は30回行った. ・ベースラインと同じ訓練/ テストを行い,開発データは 訓練データのうち2割を使う.
4. Experiments 9 ・Amazonの家電製品の レビュー ・IMDB の映画のレビュー ・上記の感情の2値分類
4. Experiments 10 ・米国議会の議論のデータセット(賛成,反対の投票の予測)
4. Experiments 11 ・20のトピック分類(20Newsgroups)
4. Experiments 12
5. Discussion 13
6. Conclusion 14 ・ベイズ最適化によってさまざまな分類問題に対して テキスト表現に関する選択の最適化を行った. ・トピック分類と感情分析において標準的な線形モデル (ロジスティック回帰)が既存の最高精度に迫ることを示した.