Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介:Bayesian Optimization of Text Representations
Search
Atom
April 08, 2019
Technology
0
140
文献紹介:Bayesian Optimization of Text Representations
長岡技術科学大学
自然言語処理研究室
吉澤亜斗武
Atom
April 08, 2019
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
roraidolaurent
0
99
文献紹介 / Knowledge Tracing with GNN
roraidolaurent
0
100
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
60
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
2
2.8k
Graph Convolutional Networks
roraidolaurent
0
240
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
76
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
120
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
120
ポッキー数列の加法定理 / Pocky number additon theorem
roraidolaurent
0
230
Other Decks in Technology
See All in Technology
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
次世代AIコーディング:OpenAI Codex の最新動向 進行スライド/nikkei-tech-talk-40
nikkei_engineer_recruiting
0
140
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
4
21k
困ったCSVファイルの話
mottyzzz
0
220
複雑さを受け入れるか、拒むか? - 事業成長とともに育ったモノリスを前に私が考えたこと #RSGT2026
murabayashi
1
1.8k
AI駆動開発ライフサイクル(AI-DLC)の始め方
ryansbcho79
0
330
AI に「学ばせ、調べさせ、作らせる」。Auth0 開発を加速させる7つの実践的アプローチ
scova0731
0
250
Data Hubグループ 紹介資料
sansan33
PRO
0
2.6k
技術選定、下から見るか?横から見るか?
masakiokuda
0
190
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3.6k
Introduction to Bill One Development Engineer
sansan33
PRO
0
340
Master Dataグループ紹介資料
sansan33
PRO
1
4.2k
Featured
See All Featured
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
81
Embracing the Ebb and Flow
colly
88
4.9k
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
170
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
GitHub's CSS Performance
jonrohan
1032
470k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
46
Evolving SEO for Evolving Search Engines
ryanjones
0
98
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
300
Unsuck your backbone
ammeep
671
58k
It's Worth the Effort
3n
188
29k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.8k
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
100
Transcript
Bayesian Optimization of Text Representations Dani Yogatama, Lingpeng Kong, Noah
A.Smith 文献紹介 2019/4/8 長岡技術科学大学 自然言語処理研究室 吉澤 亜斗武 Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2100–2105, Lisbon, Portugal, 17-21 September 2015.
Abstract ・機械学習の手法において,入力するテキストの表現方法を 逐次的最適化によって自動決定する方法を提案 ・標準的な線形モデルがニューラルネットワークなどの 非線形モデルに迫る性能を発揮 ・特に,トピック分類や感情分析において有効 2
1. Introduction ・機械学習の入力にテキストを入れる際,複数のテキスト 表現があり,その比較実験に時間がかかることが多い. 例)stop words を取り除くか,否か? 単語の重みづけは二値か,あるいは TF-IDF か?
・これらの組み合わせの決定は,パフォーマンスに重要 ・ハイパーパラメータの最適化と同様に扱えるのでは? ・sequential model based optimization (SMBO) を適応する. 3
2. Problem Formulation and Notation ・訓練データ: = . 1 ,
, 1 , ⋯ , . 𝑛𝑛 , , 𝑛𝑛 . 𝑛𝑛 : 番目の入力文書 , 𝑛𝑛 :出力空間(分類先) ・開発データを用いて,適当な指標(分類精度,尤度,F値)を 用いてハイパーパラメータを調整する. ・入力のベクトル表現: ・ = () 4
3. Bayesian Optimization 5
3. Bayesian Optimization 6 Tree-structured Parzen estimator (TPE)
3. Bayesian Optimization 7
4. Experiments 8 ・本手法をロジスティック 回帰に適用した. ・Hyperparameterの推定の 試行は30回行った. ・ベースラインと同じ訓練/ テストを行い,開発データは 訓練データのうち2割を使う.
4. Experiments 9 ・Amazonの家電製品の レビュー ・IMDB の映画のレビュー ・上記の感情の2値分類
4. Experiments 10 ・米国議会の議論のデータセット(賛成,反対の投票の予測)
4. Experiments 11 ・20のトピック分類(20Newsgroups)
4. Experiments 12
5. Discussion 13
6. Conclusion 14 ・ベイズ最適化によってさまざまな分類問題に対して テキスト表現に関する選択の最適化を行った. ・トピック分類と感情分析において標準的な線形モデル (ロジスティック回帰)が既存の最高精度に迫ることを示した.