Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Arthur Tenenhaus

S³ Seminar
February 13, 2015

Arthur Tenenhaus

(CentraleSupelec, Laboratoire des Signaux et Systèmes, France)

https://s3-seminar.github.io/seminars/arthur-tenenhaus

Title — Structured data analysis

Abstract — In contrast to standard data that is structured by a single individuals variables data matrix, structured data are characterized by multiple and heterogeneous sources of information, interconnected, potentially of high dimensions. In addition, each source of information may also have a complex structure (e.g. tensor structure). The need to analyze the data by taking into account their natural structure appears to be essential but requires the development of new statistical techniques that constitute the core of my current research for many years. More specifically, I will present a unified framework for multiblock, multigroup and multiway data analysis through Regularized Generalized Canonical Correlation Analysis.

S³ Seminar

February 13, 2015
Tweet

More Decks by S³ Seminar

Other Decks in Research

Transcript

  1. Structured data analysis with RGCCA
    Arthur Tenenhaus 2015/02/13

    View Slide

  2. Overview of the presentation
    X1
    X2
    XJ
    n
    p2
    p3
    p1
    ...
    Part I. Multi-block analysis
    X1
    X2
    XJ
    n
    p2
    p3
    p1
    ...
    Part II. Multi-block and
    Multi-way analysis
    X2
    X21
    X1
    X2
    XI
    n1
    p
    ...
    Part III. Multi-group analysis
    n2
    nI

    View Slide

  3. X1
    X2
    XJ
    n
    p2
    p3
    p1
    ...
    Part I. Multi-block analysis
    M. Tenenhaus
    (HEC, Paris)
    V. Guillemot
    (ICM)
    T. Löfstedt
    (CEA, Neurospin)
    C. Philippe
    (IGR)
    V. Frouin
    (CEA, Neurospin)
    P. Groenen
    (Erasmus University,
    Rotterdam)

    View Slide

  4. 4
    Economic inequality and political instability Data
    from Russett (1964)
    Agricultural inequality
    GINI : Inequality of land
    distributions
    FARM : % farmers that own half
    of the land (> 50)
    RENT : % farmers that rent all
    their land
    Industrial development
    GNPR : Gross national product
    per capita ($ 1955)
    LABO : % of labor force
    employed in agriculture
    INST : Instability of executive
    (45-61)
    ECKS : Nb of violent internal war
    incidents (46-61)
    DEAT : Nb of people killed as a
    result of civic group
    violence (50-62)
    D-STAB : Stable democracy
    D-UNST : Unstable democracy
    DICT : Dictatorship
    Economic inequality Political instability

    View Slide

  5. Economic inequality and political instability
    (Data from Russett, 1964)
    Gini Farm Rent Gnpr Labo Inst Ecks Deat Demo
    Argentine 86.3 98.2 32.9 374 25 13.6 57 217 2
    Australie 92.9 99.6 * 1215 14 11.3 0 0 1
    Autriche 74.0 97.4 10.7 532 32 12.8 4 0 2

    France 58.3 86.1 26.0 1046 26 16.3 46 1 2

    Yougoslavie 43.7 79.8 0.0 297 67 0.0 9 0 3
    X1
    X2
    X3
    5
    1 = Stable democracy
    2 = Unstable democracy
    3 = Dictatorship
    Three data blocks

    View Slide

  6. GINI
    FARM
    RENT
    GNPR
    LABO
    Agricultural inequality (X1
    )
    Industrial development (X2
    )
    ECKS
    DEAT
    D-STB
    D-INS
    INST
    DICT
    Political instability (X3
    )
    Agr.
    ineq.
    Ind.
    dev.
    Pol.
    inst.
    C13
    = 1
    C23
    = 1
    C12
    = 0
    Path diagram
    6

    View Slide

  7. Block components
    1
    = 1
    1
    = 11
    + 12
    + 13

    2
    = 2
    2
    = 21
    + 22

    3
    = 3
    3
    = 31
    + 32
    + 33
    +
    34
    . + 35
    . + 36

    Block components should verified two properties at the same
    time:
    (i) Block components explain well their own block.
    (ii) Block components are as correlated as possible for
    connected blocks.

    View Slide

  8. Covariance-based criteria
    cjk
    = 1 if blocks are linked, 0 otherwise and cjj
    = 0
    maximize
    ,

    cor(

    ,

    )
    maximize
    ,

    cor2(

    ,

    )
    maximize
    ,

    |cor

    ,

    |
    maximize
    all ‖‖=1
    ,

    cov(

    ,

    )
    maximize
    all ‖‖=1
    ,

    cov2(

    ,

    )
    maximize
    all ‖‖=1
    ,

    |cov

    ,

    |
    SUMCOR (Horst, 1961)
    SSQCOR (Mathes, 1993 ; Hanafi, 2004)
    SABSCOR (Mathes, 1993 ; Hanafi, 2004)
    SUMCOV (Van de Geer, 1984)
    SSQCOV (Hanafi & Kiers, 2006)
    SABSCOV (Krämer, 2006)
    Some modified multi-block methods
    GENERALIZED CANONICAL CORRELATION ANALYSIS
    GENERALIZED CANONICAL COVARIANCE ANALYSIS
    cov2

    ,

    = var

    cor2(

    ,

    )var

    Some multi-block methods

    View Slide

  9. Covariance-based criteria
    cjk
    = 1 if blocks are linked, 0 otherwise and cjj
    = 0
    maximize
    all var =1
    ,

    cov(

    ,

    )
    maximize
    all var =1
    ,

    cov2(

    ,

    )
    maximize
    all var =1
    ,

    |cov

    ,

    |
    maximize
    all ‖‖=1
    ,

    cov(

    ,

    )
    maximize
    all ‖‖=1
    ,

    cov2(

    ,

    )
    maximize
    all ‖‖=1
    ,

    |cov

    ,

    |
    SUMCOR:
    SSQCOR:
    SABSCOR:
    SUMCOV:
    SSQCOV:
    SABSCOV:
    cov2

    ,

    = var

    cor2(

    ,

    )var

    View Slide

  10. RGCCA optimization problem
    argmax
    1,2,…,

    g cov

    ,



    1 −
    var

    +

    2
    = 1, = 1, … ,
    Subject to the constraints
    and:
    identity (Horst sheme)
    square (Factorial scheme)
    abolute value (Centroid scheme)
    g


     


    Shrinkage constant between 0 and 1
    j
     




    otherwise
    0
    connected
    is
    and
    if
    1
    k
    j
    X
    X
    jk
    c
    where: A monotone convergent algorithm
    Schäfer and Strimmer formula can be used for an
    optimal determination of the shrinkage constants
    • Tenenhaus A. and Tenenhaus M., Regularized Generalized Canonical Correlation Analysis, Psychometrika, vol. 76, Issue 2, pp. 257-284, 2011
    • Tenenhaus A., Philippe C., Frouin V., Kernel Generalized Canonical Correlation Analysis, Computational Statistics and Data Analysis, in revision.
    • Tenenhaus A. and Guillemot V. (2013): RGCCA Package. http://cran.project.org/web/packages/RGCCA/index.html

    View Slide

  11. Method Criterion Constraints
    PLS regression 1 1 2 2
    Maximize Cov( , )
    X a X a
    1 2
    1
     
    a a
    Canonical
    Correlation
    Analysis
    1 1 2 2
    Maximize Cor( , )
    X a X a
    1 1 2 2
    Var( ) Var( ) 1
     
    X a X a
    Redundancy
    analysis of X1
    with
    respect to X2
    1/2
    1 1 2 2 1 1
    Maximize
    Cor( , )Var( )
    X a X a X a
    1
    2 2
    1
    Var( ) 1


    a
    X a
    Special cases
    Components X1
    a1
    and X2
    a2
    are well correlated.
    No stability condition for
    2nd component
    1st component is stable
    argmax
    1,2
    cov(1
    1
    , 2
    2
    )
    1 −
    var

    +

    2
    = 1, = 1,2
    Subject to the constraints
    Choice of the shrinkage constant j
    (part 1)

    View Slide

  12. Choice of the shrinkage constant j
    (part 2)
    0 1
    Favoring
    correlation
    Favoring
    stability
    j
    Schäfer and Strimmer formula can be used for an
    optimal determination of the shrinkage constants
    argmax
    1,2,…,

    g cov

    ,



    1 −
    var

    +

    2
    = 1, = 1, … ,
    Subject to the constraints

    View Slide

  13. Choice of the design matrix C
    Hierarchical models
    (a) One second order block (b) Several second order blocks
    max
    1,2,…,


    g cov

    , +1
    +1
    1 −
    var

    +

    2
    = 1, = 1, … , + 1
    max
    1,2,…,
    =1
    1
    =1+1


    g cov

    ,

    1 −
    var

    +

    2
    = 1, = 1, … ,
    1, …, J1
    = Predictor blocks
    Very often:
    J1+1, …, J = Response Blocks

    View Slide

  14. PLS Regression Wold S., Martens & Wold H. (1983): The multivariate calibration problem in chemistry solved by the PLS method. In Proc.
    Conf. Matrix Pencils, Ruhe A. & Kåstrøm B. (Eds), March 1982, Lecture Notes in Mathematics, Springer Verlag,
    Heidelberg, p. 286-293.
    Redundancy analysis Barker M. & Rayens W. (2003): Partial least squares for discrimination, Journal of Chemometrics, 17, 166-173.
    Regularized CCA Vinod H. D. (1976): Canonical ridge and econometrics of joint production. Journal of Econometrics, 4, 147–166.
    Inter-battery factor analysis Tucker L.R. (1958): An inter-battery method of factor analysis, Psychometrika, vol. 23, n°2, pp. 111-136.
    MCOA Chessel D. and Hanafi M. (1996): Analyse de la co-inertie de K nuages de points. Revue de Statistique Appliquée, 44, 35-60
    SSQCOV Hanafi M. & Kiers H.A.L. (2006): Analysis of K sets of data, with differential emphasis on agreement between and within
    sets, Computational Statistics & Data Analysis, 51, 1491-1508.
    SUMCOR Horst P. (1961): Relations among m sets of variables, Psychometrika, vol. 26, pp. 126-149.
    SSQCOR Kettenring J.R. (1971): Canonical analysis of several sets of variables, Biometrika, 58, 433-451
    MAXDIFF Van de Geer J. P. (1984): Linear relations among k sets of variables. Psychometrika, 49, 70-94.
    PLS path modeling Tenenhaus M., Esposito Vinzi V., Chatelin Y.-M., Lauro C. (2005): PLS path modeling. Computational Statistics and Data
    (mode B) Analysis, 48, 159-205.
    Generalized Orthogonal Vivien M. & Sabatier R. (2003): Generalized orthogonal multiple co-inertia analysis (-PLS): new multiblock component
    MCOA and regression methods, Journal of Chemometrics, 17, 287-301.
    Caroll’s GCCA Carroll, J.D. (1968): A generalization of canonical correlation analysis to three or more sets of variables, Proc. 76th
    Conv. Am. Psych. Assoc., pp. 227-228.
    special cases of RGCCA (among others)
    two-block case
    multi-block case

    View Slide

  15. monotone convergent algorithms for these criteria
    argmax
    1,2,…,

    g cov

    ,



    1 −
    var

    +

    2
    = 1, = 1, … ,
    Subject to
    Two key ingredients: (i) Block relaxation
    (ii) Majorization by Minorization

    View Slide

  16. The RGCCA algorithm (primal version)
    j
    j
    j
    a
    X
    y 
    Outer Estimation
    (explains the block)
        1
    var
    1 2



    j
    j
    j
    j
    j
    a
    a
    X 

    Initial
    step j
    a
     
     
    j
    t
    j
    j
    j
    t
    j
    j
    j
    t
    j
    j
    t
    j
    j
    j
    t
    j
    j
    j
    z
    X
    I
    X
    X
    n
    X
    z
    z
    X
    I
    X
    X
    n
    a
    1
    1
    1
    1
    1
    1























    Iterate until
    convergence
    of the criterion
    cjk
    = 1 if blocks are linked, 0 otherwise and cjj
    = 0
    Inner
    Estimation
    (explains
    relation
    between
    block)
    k
    j
    k
    jk
    j
    e y
    z 


    Choice of weights ejk
    :
    - Horst :
    - Centroid :
    - Factorial :
    jk
    jk
    c
    e 
     
     
    k
    j
    jk
    jk
    c
    e y
    y ,
    cor
    sign

     
    k
    j
    jk
    jk
    c
    e y
    y ,
    cov

    Dimension =
    ×

    View Slide

  17. The RGCCA algorithm (dual version)
    Initial
    step j
    α
     
     
    j
    j
    t
    j
    j
    j
    t
    j
    j
    t
    j
    j
    j
    t
    j
    j
    j
    j
    z
    I
    X
    X
    n
    X
    X
    z
    z
    I
    X
    X
    n
    α
    1
    1
    1
    1
    1
    1























    Iterate until
    convergence
    of the criterion
    cjk
    = 1 if blocks are linked, 0 otherwise and cjj
    = 0
    Inner
    Estimation
    (explains
    relation
    between
    block)
    k
    j
    k
    jk
    j
    e y
    z 


    Choice of weights ejk
    :
    - Horst :
    - Centroid :
    - Factorial :
    jk
    jk
    c
    e 
     
     
    k
    j
    jk
    jk
    c
    e y
    y ,
    cor
    sign

     
    k
    j
    jk
    jk
    c
    e y
    y ,
    cov

    j
    t
    j
    j
    j
    α
    X
    X
    y 
    Outer Estimation
    (explains the block)
     
      1
    )
    1
    ( 1 


    j
    t
    j
    j
    n
    j
    j
    t
    j
    j
    t
    j
    α
    X
    X
    I
    X
    X
    α 

    Dimension = ×
    j
    t
    j
    j
    α
    X
    a 

    View Slide

  18. GINI
    FARM
    RENT
    GNPR
    LABO
    Agricultural inequality (X1
    )
    Industrial development (X2
    )
    ECKS
    DEAT
    D-STB
    INST
    DICT
    Political instability (X3
    )
    Agr.
    ineq.
    Ind.
    dev.
    Pol.
    inst.
    Weight vectors
    18
    0.66
    0.74
    0.10
    0.69
    -0.72
    0.17
    0.44
    0.48
    -0.56
    0.49
    Corr = 0.428
    Corr = -0.767
    small dimensional block settings ⟹ primal algorithm for RGCCA

    View Slide

  19. Bootstrap confidence intervals
    19
    GINI
    FARM
    RENT
    GNPR
    LABO
    ECKS
    DEAT
    D-STB
    INST
    DICT
    Agr.
    ineq.
    Ind.
    dev.
    Pol.
    inst.
    0.66
    0.74
    0.10
    0.69
    -0.72
    0.17
    0.44
    0.48
    -0.56
    0.49
    Corr = 0.428
    Corr = -0.767

    View Slide

  20. Data vizualization
    20
    Agricultural inequality
    Industrial development
    These countries
    have known a
    period of
    dictatorship
    after 1964.
    Greece : colonels’ dictatorship 1967-1974
    Chili : Pinochet's military regime 1973-1990
    Argentine : military dictatorship 1976-1983
    Brasil : Branco’s military dictactorship 1964-1985

    View Slide

  21. 21
    Glioma Cancer Data
    (Department of Pediatric Oncology of the Gustave Roussy Institute)
    Gene 1 Gene 2 … Gene 15201 CGH1 … CGH 1909 Localization
    Patient 1 0.18 -0.21 -0.73 0.00 -0.55 Hemisphere
    Patient 2 1.15 -0.45 0.27 -0.30 0.00 Midline
    Patient 3 1.35 0.17 0.22 0.33 0.64 DIPG


    Patient 53 1.39 0.18 … -0.17 0.00 … 0.43 Hemisphere
    Transcriptomic data (X1
    )
    CGH data (X2
    )
    outcome (X3
    )

    View Slide

  22. Glioma Cancer Data: from an RGCCA viewpoint
    (Department of Pediatric Oncology of the Gustave Roussy Institute)
    High dimensional block settings ⟹ dual algorithm for RGCCA
    Gene 1 … Gene 15201
    Patient 1 0.18 -0.73
    Patient 2 1.15 0.27
    Patient 3 1.35 0.22

    Patient 53 1.39 -0.17
    CGH1 … CGH 1909
    Patient 1 0.00 -0.55
    Patient 2 -0.30 0.00
    Patient 3 0.33 0.64

    Patient 53 0.00 0.43
    2
    1
    3
    Hemisphere DIPG
    Patient 1 1 0
    Patient 2 0 0
    Patient 3 0 1

    Patient 53 1 0
    RGCCA with factorial scheme - 1
    = 1, 2
    = 1 and 3
    = 0
    C13
    = 1
    C23
    = 1
    C12
    = 1
    C12
    = 0

    View Slide

  23. View Slide

  24. Block components
    1
    =

    = 11


    + ⋯ + 1,15201


    2
    =

    = 21


    + ⋯ + 2,1909



    =

    = 31
    + 32

    Block components should verified three properties at the same
    time:
    (i) Block components well explain their own block.
    (ii) Block components are as correlated as possible for
    connected blocks.
    (iii) Block components are built from sparse

    View Slide

  25. Behavioral data
    (Clinic, psychometric)
    Intermediate phenotype
    Final phenotype
    Genotype
    Functional MRI
    Gene Expression
    Structured variable selection for RGCCA

    View Slide

  26. (Structured) variable selection for RGCCA
    argmax
    1,2,…,

    g cov

    ,



    subject to



    = 1, = 1, … ,
    Ω(
    ) ≤
    , = 1, … ,
    • LASSO: Ω
    = 1
    Ω
    =
    =1


    +
    =1


    − ,−1
    Ω
    =

    ag 2
    • Group LASSO:
    • Fused LASSO:
    • Tenenhaus A., Philippe C., Guillemot V., Lê Cao K.-A., Grill J., Frouin V., Variable Selection for Generalized Canonical Correlation Analysis, Biostatistics, 15 (3),
    569-583, 2014.
    • Löfstedt T., Hadj-Salem F., Guillemot V., Philippe C., Duchesnay E., Frouin V., and Tenenhaus A., (2014). Structured variable selection for generalized
    canonical correlation analysis. In: Proceedings of the 8th International Conference on Partial Least Squares and Related Methods (PLS14), Paris, France.
    • Tenenhaus A. and Guillemot V. (2013): RGCCA Package. http://cran.project.org/web/packages/RGCCA/index.html

    View Slide

  27. Signature stability

    View Slide

  28. 28
    Predictive performances

    View Slide

  29. Visualization
    GE1
    CGH1

    View Slide

  30. X1
    X2
    XJ
    n
    p2
    p3
    p1
    ...
    Part II. Multi-block and
    Multi-way analysis
    X2
    X21
    G. Lechuga
    (CentraleSupélec, L2S)
    L. Le Brusquet
    (CentraleSupélec, L2S)
    L. Puybasset, V. Perlbarg & D. Galanaud
    Hôpital La Pitié-Salpêtrière

    View Slide

  31. 31
    Multimodal neuroimaging from a multiblock viewpoint
    (Brain and Spine Institute, La pitié Salpêtrière Hospital)
    2
    1
    3
    C13
    = 1
    C23
    = 1
    C12
    = 1
    C13
    = 0
    Anatomical MRI (X1
    )
    Functional MRI (X2
    )
    Behavior (X3
    )
    Anat 1 … Anat p1
    Patient 1 0.18 -0.73
    Patient 2 1.15 0.27
    Patient 3 1.35 0.22

    Patient n 1.39 -0.17
    fMRI 1 … fMRI p1
    Patient 1 0.00 -0.55
    Patient 2 -0.30 0.00
    Patient 3 0.33 0.64

    Patient n 0.00 0.43
    BEH 1 … BEH p3
    Patient 1 0.18 -0.73
    Patient 2 1.15 0.27
    Patient 3 1.35 0.22

    Patient n 1.39 -0.17
    p1
    ~104
    p2
    ~104
    p3
    ~10
    n ~100
    n ~100

    View Slide

  32. X5
    Final Phenotype
    X1
    X2
    X3
    X4
    Anatomical MRI Diffusion MRI Functional MRI
    PET
    p1
    p1
    p1
    p1
    p2
    From Multiblock data to …
    Multiway RGCCA (MGCCA)
    RGCCA algorithm
    a1
    a2
    a3
    a5
    a4
    4×p1
    parameters to estimate
    n
    • Tenenhaus A., Le Brusquet L. Regularized Generalized Canonical Correlation Analysis extended to three way data, International Conference of the ERCIM WG on
    Computational and Methodological Statistics, 2014
    • Tenenhaus A., Le Brusquet L. Three-way Regularized Generalized Canonical Correlation Analysis, ThRee-way methods In Chemistry And Psychology, (TRICAP) ,2015

    View Slide

  33. X5
    … to Multiblock / Multiway data
    X1 2
    1
    C12
    = 1
    J
    1
    b
    K
    1
    b
    2
    b
    X5
    X1
    X2
    X3
    X4
    P1
    = P2
    =
    and


    = 1, = 1,2
    1
    = 1
    ⊗ 1

    s.c.
    max
    1, 2
    cov(1
    1
    , 2
    2
    )

    View Slide

  34. P2
    … to Multiblock / Multiway data
    P1 2
    1
    C12
    = 1
    J
    1
    b
    K
    1
    b
    2
    b
    MGCCA
    b2
    K
    1
    b J
    1
    b
    4 + p1
    parameters to estimate
    instead of 4 × p1
    K J
    1 1 1
    b b b
     

    View Slide

  35. MGCCA optimization problem


    = 1, = 1, … ,

    =


    , = 1, … ,
    s.c.
    max
    1,…,

    g cov(

    ,

    )


    1
    ..1
    P
    1
    ..k
    P
    1
    1
    ..K
    P
    3
    ..1
    P
    3
    ..k
    P
    3
    3
    ..K
    P
    2
    ..1
    P
    2
    ..k
    P
    2
    2
    ..K
    P
    1
    3
    2
    C13
    = 1
    C23
    = 1
    C12
    = 1
    C13
    = 0
    J
    1
    b
    K
    1
    b
    J
    2
    b
    K
    2
    b
    J
    3
    b
    K
    3
    b
    1
    2
    3

    View Slide

  36. MGCCA algorithm
    y P b

    j j j
    Outer component
    (summarizes the block)
    Initial
    step j
    b
    Iterate until
    convergence
    of the criterion
    cjk
    = 1 if blocks/groups are connected and 0 otherwise
    Inner
    component
    (take into
    account
    relationships
    between
    blocks)
    j jk k
    k j
    z e y

     
     
    1
    , arg max cov( , )
    b b b
    b
    b b P b z
     


    K J
    K J
    j j j j
    Choice of weights ejk
    :
    - Horst :
    - Centroid :
    - Factorial :
    jk jk
    e =c
     
    sign cov( , )
    ik jk j k
    e c y y

    cov( , )
    jk jk j k
    e c y y

    ...,
    j
    j j
    j ..1 ..K
    ,
    P P P
     
      

    = 1 and
    =



     
    ,
    K J
    j j
    b b are obtained by SVD

    View Slide

  37. MGCCA results
    P2
    P1 2
    1
    J
    1
    b
    K
    1
    b
    2
    b
    Predict the long term recovery of patients after traumatic brain injury
    Influence of spatial positions Influence of the
    modalities
    J
    1
    b
    K
    1
    b
    Discriminating
    voxels within
    the white matter
    bundles
    Bad prognosis
    Good prognosis
    Control

    View Slide

  38. X1
    X2
    XI
    n1
    p
    ...
    Part III. Multi-group analysis
    n2
    nI
    M. Tenenhaus
    (HEC, Paris)

    View Slide

  39. Part III: multigroup data analysis
    • SETTINGS: The same set of
    variables are measured on individuals
    structured in several groups. groups
    are centered and normalized (unit
    norm)
    • OBJECTIVE: investigate the
    relationships between variables
    within the various groups.
    X2
    n
    1
    p
    X2
    n
    2
    n
    I
    X2
    X2
    Tenenhaus, A. and Tenenhaus, M. (2014). Regularized Generalized Canonical Correlation Analysis for multiblock or
    multigroup data analysis. European Journal of Operational Research, 238 :391–403.
    X2
    X2

    View Slide

  40. RGCCA for multiblock data analysis
    argmax
    1,2,…,

    g cov

    ,



    1 −
    var

    +

    2
    = 1, = 1, … ,
    Subject to the constraints
    Block
    component
    cov2

    ,

    = var

    cor2(

    ,

    )var

    Block components should verified two properties at the same
    time:
    (i) Block components well explain their own block.
    (ii) Block components are as correlated as possible for
    connected blocks.

    View Slide

  41. RGCCA for multigroup data analysis
    argmax
    1,…,

    g


    ,




    (1 −
    )‖

    ‖2 +

    ‖2 = 1, = 1, … ,
    s.c.



    ,


    = cos


    ,


    ×


    × ‖



    Group loadings and group components should verified the
    following properties at the same time:
    • Group component
    well explains their own block.
    • Small angle between loadings if groups are connected
    Similar Loadings
    Group
    loadings
    Group
    components

    View Slide

  42. Conclusion
    X1
    X2
    XJ
    n
    p2
    pJ
    p1
    ...
    Multiblock analysis
    X1
    X2
    XJ
    n
    p2
    p3
    p1
    ...
    Multiblock/Multiway analysis
    X2
    X21
    X1
    X2
    XI
    n1
    p
    ...
    Multigroup analysis
    n2
    nI
    RGCCA for multiblock,
    multigroup or multiway
    data allows analyzing
    the data in their natural
    (but complex) structure.

    View Slide