Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Forecast Getting Start
Search
貞松政史
October 11, 2019
Technology
0
1.5k
Amazon Forecast Getting Start
2019.10.11 DevelopersIO 2019 in Osaka
貞松政史
October 11, 2019
Tweet
Share
More Decks by 貞松政史
See All by 貞松政史
Amazon Forecast亡き今、我々がマネージドサービスに頼らず時系列予測を実行する方法
sadynitro
0
440
今日のハイライトをシステマティックに
sadynitro
1
48
はじめてのレコメンド〜Amazon Personalizeを使った推薦システム超超超入門〜
sadynitro
1
1.4k
予知保全利用を目指した外観検査AIの開発 〜画像処理AIを用いた外観画像に対する異常検知〜
sadynitro
0
720
20230904_GoogleCloudNext23_Recap_AI_ML
sadynitro
0
760
Foundation Model全盛時代を生きるAI/MLエンジニアの生存戦略
sadynitro
0
850
Amazon SageMakerが存在しない世界線 のAWS上で実現する機械学習基盤
sadynitro
0
200
Amazon SageMakerが存在しない世界線のAWS上で実現する機械学習基盤
sadynitro
0
1.7k
みんな大好き強化学習
sadynitro
0
1.1k
Other Decks in Technology
See All in Technology
Amazon Athenaから利用時のGlueのIcebergテーブルのメンテナンスについて
nayuts
0
100
"TEAM"を導入したら最高のエンジニア"Team"を実現できた / Deploying "TEAM" and Building the Best Engineering "Team"
yuj1osm
1
230
エンジニア主導の企画立案を可能にする組織とは?
recruitengineers
PRO
1
270
AI自体のOps 〜LLMアプリの運用、AWSサービスとOSSの使い分け〜
minorun365
PRO
9
750
【詳説】コンテンツ配信 システムの複数機能 基盤への拡張
hatena
0
280
あなたが人生で成功するための5つの普遍的法則 #jawsug #jawsdays2025 / 20250301 HEROZ
yoshidashingo
2
320
実は強い 非ViTな画像認識モデル
tattaka
3
1.4k
Two Blades, One Journey: Engineering While Managing
ohbarye
4
2.3k
わたしがEMとして入社した「最初の100日」の過ごし方 / EMConfJp2025
daiksy
14
5.3k
Oracle Database Technology Night #87-1 : Exadata Database Service on Exascale Infrastructure(ExaDB-XS)サービス詳細
oracle4engineer
PRO
1
210
EMConf JP 2025 懇親会LT / EMConf JP 2025 social gathering
sugamasao
2
200
OPENLOGI Company Profile for engineer
hr01
1
20k
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.7k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
The Cost Of JavaScript in 2023
addyosmani
47
7.4k
Stop Working from a Prison Cell
hatefulcrawdad
268
20k
Producing Creativity
orderedlist
PRO
344
40k
BBQ
matthewcrist
87
9.5k
Building Adaptive Systems
keathley
40
2.4k
Speed Design
sergeychernyshev
27
810
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.5k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.3k
Transcript
みんな⼤好き時系列予測 〜Amazon Forecastで時系列予測やってみた〜 データアナリティクス事業本部 インテグレーション部 貞松 政史
スライドは後で⼊⼿することが出来ますので 発表中の内容をメモする必要はありません。 写真撮影をする場合は フラッシュ・シャッター⾳が出ないようにご配慮ください Attention
3 ⾃⼰紹介 • ⽒名 • 貞松 政史 (サダマツ マサシ) •
所属 • データアナリティクス事業本部 • インテグレーション部 開発チーム • 岡⼭オフィス勤務 •好きなAWSサービス • SageMaker • Lambda • Forecast ← new!
4 本セッションのゴール Amazon Forecast だいたいわかった ü Amazon Forecastの概要 ü コンソール上での操作⼿順
ü なんとなくの活⽤イメージ
5 本セッションで話さないこと 時系列予測の理論的な(深い)話 がっつりシステムに組み込む話
6 おしながき 1. Amazon Forecastとは 2. 時系列予測の基礎 3. コンソール上でのForecastの操作⼿順 4.
オープンデータを使った使⽤例
7 Amazon Forecastとは 1. Amazon Forecastとは 2. 時系列予測の基礎 3. コンソール上でのForecastの操作⼿順
4. オープンデータを使った使⽤例
8 Amazon Forecast とは 機械学習の経験なしで使⽤できる Amazon.comと同じテクノロジーに 基づいた正確な時系列予測サービス
9 で、何ができるの︖ ü 予測したい数値を含む時系列データをインポート ü 時系列予測のアルゴリズムを選択して学習を実⾏ (AutoMLを利⽤すればアルゴリズムの選択も不要︕) ü 学習済みモデル(予測⼦)を⽤いて予測を作成 これだけで時系列予測ができちゃう
10 Forecastのメリット データの収集 データの前処理 学習アルゴリズムの実装 学習済みモデルの性能検証 予測の可視化 通常の時系列予測のプロセス ⾃前で準備・実装
11 Forecastのメリット データの収集 データの前処理 学習アルゴリズムの実装 学習済みモデルの性能検証 予測の可視化 Forecastを利⽤した時系列予測のプロセス ⾃前で準備 Forecastの機能
12 Forecastの活⽤領域 • ⼩売の需要予測 • 在庫予測 • 収益・売上・キャッシュフローの予測 • 従業員・労働⼒の計画
• ウェブトラフィックの⾒積 • Amazon EC2のキャパシティ予測 etc…
13 Forecastの利⽤⽅法 • コンソール上で使⽤ ← 今回はこれ • AWS CLIで使⽤ •
Jupyter Notebookで使⽤ • AWS SDKで使⽤ (for Python, for Java など)
14 時系列予測の基礎 1. Amazon Forecastとは 2. 時系列予測の基礎 3. コンソール上でのForecastの操作⼿順 4.
オープンデータを使った使⽤例
15 時系列予測とは
時間的な連続性を持つ過去の実績データから未来の数値・傾向を予測する ? ? ?
16 どうやって予測するのか 0 2 4 6 8 10 12 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 value 0 10 20 30 40 50 60 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 value temp 予測対象データ⾃体の傾向 季節変動・トレンド →その他外部要因(周辺環境の変化、世界情勢)など 古典的な統計⼿法や機械学習を適⽤することで予測
17 コンソール上でのForecastの操作⼿順 1. Amazon Forecastとは 2. 時系列予測の基礎 3. コンソール上でのForecastの操作⼿順 4.
オープンデータを使った使⽤例
18 Forecastの構成要素 データセットグループ データセット(必須) TARGET_TIME_SERIES データセット(任意) RELATED_TIME_SERIES データセット(任意) ITEM_METADATA 予測⼦(予測⽤の学習済みモデル)
予測
19 コンソール上でのForecastの操作⼿順 データセットグループ作成 データセット作成 データインポート 予測⼦の作成 予測の作成 予測の可視化
20 サンプルデータ http://archive.ics.uci.edu/ml UCI Machine Learning で公開されている電⼒利⽤量データ
21 データセットグループの作成 トップページ → Create dataset group
22 データセットグループの作成 データセットグループ名とドメインを⼊⼒
23 Forecast domain • RETAIL : ⼩売の需要予測 • INVENTORY_PLANNING :
サプライチェーンと在庫の計画 • EC2 CAPACITY : Amazon EC2 キャパシティの予測 • WORK_FORCE : 従業員の計画 • WEB_TRAFFIC : 今後のウェブトラフィックの⾒積もり • METRICS : 収益およびキャッシュフローなどの予測メトリクス • CUSTOM : その他すべての時系列予測のタイプ
24 データセットの作成 • データセット名 • データの時間刻み • スキーマ定義 • 必須のスキーマ
⁻ item_id ⁻ timestamp ⁻ target_value • 任意のスキーマ
25 時系列データの時間刻み 選択可能な時間刻みの単位 • minutes : 分 • hour :
時間 • day : ⽇ • week : 週 • month : ⽉ • year : 年
26 データインポート • データセットインポート名 • タイムスタンプフォーマット ⁻ yyyy-MM-dd HH:mm:ss ⁻
yyyy-MM-dd • IAMロール(S3のRead) • インポートするデータの場所 ⁻ S3バケット上のパス
27 予測⼦の作成
28 予測⼦の作成 • 予測⼦名 • 予測範囲(期間) • 予測の時間刻み • 予測アルゴリズムの選択
⁻ AutoML(⾃動選択) ⁻ Manual(⼿動選択)
29 予測⼦の作成 Forecastで使⽤可能な時系列予測アルゴリズム • ARIMA : ⾃⼰回帰和分移動平均 • DeepAR+ :
再帰型ニューラルネットワーク (RNN) を使⽤してスカ ラー (1次元) 時系列を予測するための、教師あり学習アルゴリズム • ETS : 指数平滑法 • NPTS : ノンパラメトリック時系列 • Prophet : 局所的なベイズ構造時系列モデル
30 予測⼦の作成 • Forecast dimensions • Backtest window ⁻ Number
of windows ⁻ Offset • Advanced configutations ⁻ ハイパーパラメータ設定など
31 作成した予測⼦の確認
32 作成した予測⼦の確認
33 作成した予測⼦の確認 平均平⽅⼆乗誤差 (Root Mean Squared Error, RMSE) 外れ値 (⼤きなズレ)
を より⼤きな誤差として扱う -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 値が⼩さいほど良い
34 作成した予測⼦の確認 重み付けされた分位損失 (weighted Quantile Loss) 値が⼩さいほど良い
35 予測の作成
36 予測の作成 予測名と予測⼦を⼊⼒
37 予測の可視化 27
38 予測の可視化 27
39 予測のエクスポート
40 予測のエクスポート • 予測エクスポート名 • 出⼒する予測結果 • IAM(S3 Write) •
出⼒先のS3バケットのパス
41 予測のエクスポート 指定したS3バケットのパスにファイル出⼒ ←予測結果データが ⼊ったCSVファイル
42 予測のエクスポート 以下の列項⽬を含む • item_id • date • p10, p50,
p90
43 ユースケース 1. Amazon Forecastとは 2. 時系列予測の基礎 3. コンソール上でのForecastの操作⼿順 4.
オープンデータを使った使⽤例
44 福岡市のインフルエンザ報告数 https://ckan.open-governmentdata.org/dataset/influenza401307fukuoka
45 データ仕様 データ期間︓2015年7⽉〜2019年8⽉(1週間刻み)
46 データの前処理 組み合わせて item_idに 年と週番号を週頭の 年⽉⽇に変換して timestampに そのまま target_valueに
47 データの前処理結果 item_id, timestamp, target_valueを持つデータに変換完了 item_idが⽇本語の値 → 問題なし ※但しファイルの⽂字コードがUTF-8になっていること
48 ここからはForcastの出番 あとは Forecast におまかせ︕
49 予測の可視化 ↑⽇本語のitem_id
50 予測の可視化
51 Bless you. インフルエンザには気をつけましょう
まとめ
53 まとめ Amazon Forecastは機械学習の経験が無くても 使⽤可能な時系列予測サービス データの収集・前処理さえしておけばGUI上で ポチポチするだけで時系列予測ができる 幾つかの制限・課題はあるものの既に時系列データを 蓄積している幅広い分野で活⽤できる可能性がある
54 結論 Amazon Forecast はいいぞ
55