Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Forecast Getting Start
Search
貞松政史
October 11, 2019
Technology
0
1.6k
Amazon Forecast Getting Start
2019.10.11 DevelopersIO 2019 in Osaka
貞松政史
October 11, 2019
Tweet
Share
More Decks by 貞松政史
See All by 貞松政史
Amazon Forecast亡き今、我々がマネージドサービスに頼らず時系列予測を実行する方法
sadynitro
0
1.2k
今日のハイライトをシステマティックに
sadynitro
1
82
はじめてのレコメンド〜Amazon Personalizeを使った推薦システム超超超入門〜
sadynitro
2
2.5k
予知保全利用を目指した外観検査AIの開発 〜画像処理AIを用いた外観画像に対する異常検知〜
sadynitro
0
1.2k
20230904_GoogleCloudNext23_Recap_AI_ML
sadynitro
0
920
Foundation Model全盛時代を生きるAI/MLエンジニアの生存戦略
sadynitro
0
1k
Amazon SageMakerが存在しない世界線 のAWS上で実現する機械学習基盤
sadynitro
0
300
Amazon SageMakerが存在しない世界線のAWS上で実現する機械学習基盤
sadynitro
0
2.1k
みんな大好き強化学習
sadynitro
0
1.3k
Other Decks in Technology
See All in Technology
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
350
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
3k
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
420
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
100
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.3k
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
230
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
0
870
変化するコーディングエージェントとの現実的な付き合い方 〜Cursor安定択説と、ツールに依存しない「資産」〜
empitsu
4
1.3k
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
440
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
0
120
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
6
2.7k
Featured
See All Featured
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.9k
Statistics for Hackers
jakevdp
799
230k
The Curse of the Amulet
leimatthew05
1
8.4k
Done Done
chrislema
186
16k
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.3k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
96
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
53
Ruling the World: When Life Gets Gamed
codingconduct
0
140
Mobile First: as difficult as doing things right
swwweet
225
10k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
Joys of Absence: A Defence of Solitary Play
codingconduct
1
290
Transcript
みんな⼤好き時系列予測 〜Amazon Forecastで時系列予測やってみた〜 データアナリティクス事業本部 インテグレーション部 貞松 政史
スライドは後で⼊⼿することが出来ますので 発表中の内容をメモする必要はありません。 写真撮影をする場合は フラッシュ・シャッター⾳が出ないようにご配慮ください Attention
3 ⾃⼰紹介 • ⽒名 • 貞松 政史 (サダマツ マサシ) •
所属 • データアナリティクス事業本部 • インテグレーション部 開発チーム • 岡⼭オフィス勤務 •好きなAWSサービス • SageMaker • Lambda • Forecast ← new!
4 本セッションのゴール Amazon Forecast だいたいわかった ü Amazon Forecastの概要 ü コンソール上での操作⼿順
ü なんとなくの活⽤イメージ
5 本セッションで話さないこと 時系列予測の理論的な(深い)話 がっつりシステムに組み込む話
6 おしながき 1. Amazon Forecastとは 2. 時系列予測の基礎 3. コンソール上でのForecastの操作⼿順 4.
オープンデータを使った使⽤例
7 Amazon Forecastとは 1. Amazon Forecastとは 2. 時系列予測の基礎 3. コンソール上でのForecastの操作⼿順
4. オープンデータを使った使⽤例
8 Amazon Forecast とは 機械学習の経験なしで使⽤できる Amazon.comと同じテクノロジーに 基づいた正確な時系列予測サービス
9 で、何ができるの︖ ü 予測したい数値を含む時系列データをインポート ü 時系列予測のアルゴリズムを選択して学習を実⾏ (AutoMLを利⽤すればアルゴリズムの選択も不要︕) ü 学習済みモデル(予測⼦)を⽤いて予測を作成 これだけで時系列予測ができちゃう
10 Forecastのメリット データの収集 データの前処理 学習アルゴリズムの実装 学習済みモデルの性能検証 予測の可視化 通常の時系列予測のプロセス ⾃前で準備・実装
11 Forecastのメリット データの収集 データの前処理 学習アルゴリズムの実装 学習済みモデルの性能検証 予測の可視化 Forecastを利⽤した時系列予測のプロセス ⾃前で準備 Forecastの機能
12 Forecastの活⽤領域 • ⼩売の需要予測 • 在庫予測 • 収益・売上・キャッシュフローの予測 • 従業員・労働⼒の計画
• ウェブトラフィックの⾒積 • Amazon EC2のキャパシティ予測 etc…
13 Forecastの利⽤⽅法 • コンソール上で使⽤ ← 今回はこれ • AWS CLIで使⽤ •
Jupyter Notebookで使⽤ • AWS SDKで使⽤ (for Python, for Java など)
14 時系列予測の基礎 1. Amazon Forecastとは 2. 時系列予測の基礎 3. コンソール上でのForecastの操作⼿順 4.
オープンデータを使った使⽤例
15 時系列予測とは
時間的な連続性を持つ過去の実績データから未来の数値・傾向を予測する ? ? ?
16 どうやって予測するのか 0 2 4 6 8 10 12 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 value 0 10 20 30 40 50 60 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 value temp 予測対象データ⾃体の傾向 季節変動・トレンド →その他外部要因(周辺環境の変化、世界情勢)など 古典的な統計⼿法や機械学習を適⽤することで予測
17 コンソール上でのForecastの操作⼿順 1. Amazon Forecastとは 2. 時系列予測の基礎 3. コンソール上でのForecastの操作⼿順 4.
オープンデータを使った使⽤例
18 Forecastの構成要素 データセットグループ データセット(必須) TARGET_TIME_SERIES データセット(任意) RELATED_TIME_SERIES データセット(任意) ITEM_METADATA 予測⼦(予測⽤の学習済みモデル)
予測
19 コンソール上でのForecastの操作⼿順 データセットグループ作成 データセット作成 データインポート 予測⼦の作成 予測の作成 予測の可視化
20 サンプルデータ http://archive.ics.uci.edu/ml UCI Machine Learning で公開されている電⼒利⽤量データ
21 データセットグループの作成 トップページ → Create dataset group
22 データセットグループの作成 データセットグループ名とドメインを⼊⼒
23 Forecast domain • RETAIL : ⼩売の需要予測 • INVENTORY_PLANNING :
サプライチェーンと在庫の計画 • EC2 CAPACITY : Amazon EC2 キャパシティの予測 • WORK_FORCE : 従業員の計画 • WEB_TRAFFIC : 今後のウェブトラフィックの⾒積もり • METRICS : 収益およびキャッシュフローなどの予測メトリクス • CUSTOM : その他すべての時系列予測のタイプ
24 データセットの作成 • データセット名 • データの時間刻み • スキーマ定義 • 必須のスキーマ
⁻ item_id ⁻ timestamp ⁻ target_value • 任意のスキーマ
25 時系列データの時間刻み 選択可能な時間刻みの単位 • minutes : 分 • hour :
時間 • day : ⽇ • week : 週 • month : ⽉ • year : 年
26 データインポート • データセットインポート名 • タイムスタンプフォーマット ⁻ yyyy-MM-dd HH:mm:ss ⁻
yyyy-MM-dd • IAMロール(S3のRead) • インポートするデータの場所 ⁻ S3バケット上のパス
27 予測⼦の作成
28 予測⼦の作成 • 予測⼦名 • 予測範囲(期間) • 予測の時間刻み • 予測アルゴリズムの選択
⁻ AutoML(⾃動選択) ⁻ Manual(⼿動選択)
29 予測⼦の作成 Forecastで使⽤可能な時系列予測アルゴリズム • ARIMA : ⾃⼰回帰和分移動平均 • DeepAR+ :
再帰型ニューラルネットワーク (RNN) を使⽤してスカ ラー (1次元) 時系列を予測するための、教師あり学習アルゴリズム • ETS : 指数平滑法 • NPTS : ノンパラメトリック時系列 • Prophet : 局所的なベイズ構造時系列モデル
30 予測⼦の作成 • Forecast dimensions • Backtest window ⁻ Number
of windows ⁻ Offset • Advanced configutations ⁻ ハイパーパラメータ設定など
31 作成した予測⼦の確認
32 作成した予測⼦の確認
33 作成した予測⼦の確認 平均平⽅⼆乗誤差 (Root Mean Squared Error, RMSE) 外れ値 (⼤きなズレ)
を より⼤きな誤差として扱う -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 値が⼩さいほど良い
34 作成した予測⼦の確認 重み付けされた分位損失 (weighted Quantile Loss) 値が⼩さいほど良い
35 予測の作成
36 予測の作成 予測名と予測⼦を⼊⼒
37 予測の可視化 27
38 予測の可視化 27
39 予測のエクスポート
40 予測のエクスポート • 予測エクスポート名 • 出⼒する予測結果 • IAM(S3 Write) •
出⼒先のS3バケットのパス
41 予測のエクスポート 指定したS3バケットのパスにファイル出⼒ ←予測結果データが ⼊ったCSVファイル
42 予測のエクスポート 以下の列項⽬を含む • item_id • date • p10, p50,
p90
43 ユースケース 1. Amazon Forecastとは 2. 時系列予測の基礎 3. コンソール上でのForecastの操作⼿順 4.
オープンデータを使った使⽤例
44 福岡市のインフルエンザ報告数 https://ckan.open-governmentdata.org/dataset/influenza401307fukuoka
45 データ仕様 データ期間︓2015年7⽉〜2019年8⽉(1週間刻み)
46 データの前処理 組み合わせて item_idに 年と週番号を週頭の 年⽉⽇に変換して timestampに そのまま target_valueに
47 データの前処理結果 item_id, timestamp, target_valueを持つデータに変換完了 item_idが⽇本語の値 → 問題なし ※但しファイルの⽂字コードがUTF-8になっていること
48 ここからはForcastの出番 あとは Forecast におまかせ︕
49 予測の可視化 ↑⽇本語のitem_id
50 予測の可視化
51 Bless you. インフルエンザには気をつけましょう
まとめ
53 まとめ Amazon Forecastは機械学習の経験が無くても 使⽤可能な時系列予測サービス データの収集・前処理さえしておけばGUI上で ポチポチするだけで時系列予測ができる 幾つかの制限・課題はあるものの既に時系列データを 蓄積している幅広い分野で活⽤できる可能性がある
54 結論 Amazon Forecast はいいぞ
55