Challenges & Future directions
Bechhofer, S., Buchan, I., Roure, D. D., Missier, P., Ainsworth, J., Bhagat, J., Couch, P., et al. (2013). Why linked data is not
enough for scientists. Future Generation Computer Systems, 29(2), 599–611.
doi:http://dx.doi.org/10.1016/j.future.2011.08.004
Bernal, J. D. (1960). Scientific information and its users. In Aslib proceedings (Vol. 12, pp. 432–438). MCB UP Ltd.
Donoho, D. L. (2010). An invitation to reproducible computational research. Biostatistics, 11(3), 385–388.
Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., & Ghosh, S. S. (2011). Nipype: a
flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in neuroinformatics, 5.
Kronick, D. A. (1990). Peer review in 18th-century scientific journalism. JAMA: the journal of the American Medical
Association, 263(10), 1321–1322.
Poline, J.-B., Breeze, J. L., Ghosh, S., Gorgolewski, K., Halchenko, Y. O., Hanke, M., Haselgrove, C., et al. (2012). Data
sharing in neuroimaging research. Frontiers in neuroinformatics, 6.
Ragan-Kelley, B., Walters, W. A., McDonald, D., Riley, J., Granger, B. E., Gonzalez, A., Knight, R., et al. (2012). Collaborative
cloud-enabled tools allow rapid, reproducible biological insights. The ISME journal.
Satrajit S. Ghosh - [email protected] Python Tools for Reproducible Researchin Brain Imaging July 27, 2013 47 / 47