Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AWS Loft Tokyo のASK AN EXPERT ブースにおけるご相談・ご対応ロ...
Search
Eiji Shinohara
February 23, 2019
Technology
0
570
AWS Loft Tokyo の ASK AN EXPERT ブースにおける ご相談・ご対応ログ を分析しました :) / ASK AN EXPERT at AWS Loft Tokyo - Tech Consulting Log Analysis
delivered this talk at JAWS DAYS 2019 (
https://jawsdays2019.jaws-ug.jp/
)
Eiji Shinohara
February 23, 2019
Tweet
Share
More Decks by Eiji Shinohara
See All by Eiji Shinohara
Algolia Best Practices Fall 2020
shinodogg
2
1.1k
Algolia Fall 20 Release - wrap up in Japanese
shinodogg
0
850
Algolia 2020 Autumn
shinodogg
0
3.1k
Algolia introduction - DEMO and Ranking Formula
shinodogg
0
380
Introducing Algolia with Demo
shinodogg
0
5.9k
Algolia Announces Global Expansion Into Japan
shinodogg
0
2.2k
Introducing Algolia in a nutshell
shinodogg
1
1.2k
Building and Running Microservices with AWS
shinodogg
0
710
Accelerating AdTech on AWS in Japan
shinodogg
1
330
Other Decks in Technology
See All in Technology
デジタルアイデンティティ人材育成推進ワーキンググループ 翻訳サブワーキンググループ 活動報告 / 20250114-OIDF-J-EduWG-TranslationSWG
oidfj
0
540
#TRG24 / David Cuartielles / Post Open Source
tarugoconf
0
580
Visual StudioとかIDE関連小ネタ話
kosmosebi
1
370
comilioとCloudflare、そして未来へと向けて
oliver_diary
6
440
2024年活動報告会(人材育成推進WG・ビジネスサブWG) / 20250114-OIDF-J-EduWG-BizSWG
oidfj
0
230
30分でわかる「リスクから学ぶKubernetesコンテナセキュリティ」/30min-k8s-container-sec
mochizuki875
3
450
カップ麺の待ち時間(3分)でわかるPartyRockアップデート
ryutakondo
0
140
Oracle Base Database Service:サービス概要のご紹介
oracle4engineer
PRO
1
16k
東京Ruby会議12 Ruby と Rust と私 / Tokyo RubyKaigi 12 Ruby, Rust and me
eagletmt
3
870
CDKのコードレビューを楽にするパッケージcdk-mentorを作ってみた/cdk-mentor
tomoki10
0
210
実践! ソフトウェアエンジニアリングの価値の計測 ── Effort、Output、Outcome、Impact
nomuson
0
2.1k
[IBM TechXchange Dojo]Watson Discoveryとwatsonx.aiでRAGを実現!事例のご紹介+座学②
siyuanzh09
0
110
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.4k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
VelocityConf: Rendering Performance Case Studies
addyosmani
327
24k
Navigating Team Friction
lara
183
15k
Speed Design
sergeychernyshev
25
740
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
3
360
Scaling GitHub
holman
459
140k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
How to Ace a Technical Interview
jacobian
276
23k
How GitHub (no longer) Works
holman
312
140k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Transcript
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. ) 9C :KN : E / L A
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. ( ) 2 7B : @ @ @ : A : @ @ @ 31 .4A4 T c 0 - a WS ML 31 /@8 2@ @ JI L J
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. AWS Loft Tokyo? ASK AN EXPERT?
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. ASK AN EXPERT @ AWS Loft Tokyo ! 2 01 8 - AWS ! Startup Developer J
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. AWS Cloud9
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. Analyzing ASK AN EXPERT Logs ! Tokenization Word2Vec
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. Analyzing ASK AN EXPERT Logs ! Tokenization from janome.tokenizer import Tokenizer t = Tokenizer("userdic.csv", udic_enc="utf8") f = io.open('./sodan.txt', 'r', encoding='utf-8’) tokens = t.tokenize(line) for token in tokens: partOfSpeech = token.part_of_speech.split(',')[0] if partOfSpeech == u'’: if token.surface == ‘https’: pass elif token.surface.isnumeric(): pass else: sodan_words.append(token.surface) https://github.com/mocobeta/janome
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. Analyzing ASK AN EXPERT Logs ! Word2Vec from gensim.models import word2vec sodan_sentences = word2vec.Text8Corpus('./sodan_words.txt') sodan_model = word2vec.Word2Vec(sodan_sentences, size=200, min_count=20, window=15) results = sodan_model.wv.most_similar(positive=[u'']) for result in results: print(result) https://github.com/RaRe-Technologies/gensim
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. ASK AN EXPERT Logs ! 43 9D 9 . 3 058675 2 3 1 . 3 - 2 3 43 058675 3 . 3 I 9D EAC :
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. ASK AN EXPERT Logs ! 2 A L . 201 65 - A 201 2 743 . 8 9:
© 2019, Amazon Web Services, Inc. or its Affiliates. All
rights reserved. AWS Loft Tokyo - ASK AN EXPERT Logs • EC2/RDS/S3 27)+&(70*T LO G;@ ! ⇒ <8=CU • "$Lambda'6,.FMIJT ?QK/ %524LOU ⇒ > J • AWS9SAWS(37-IJ:ND AB# (*´∀V*) " E HRAWS Loft Tokyo “ASK AN EXPERT”17*P J